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Safety Explainability Non-discrimination Accountability
& Robustness & Fairness & Auditability

Trustworthy Al: A Computational Perspective, ArXiv: 2107.06641, 2021.
Tutorial: https://sites.google.com/msu.edu/trustworthy-ai/
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Privacy Issue &

(1 The success of recommender systems
heavily relies on data that might
contain private and sensitive
information.

(d Can we still take the advantages of

data while effectively protecting the
privacy?




l Explainability Issue

How recommender systems work?
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* Why did you do that?
* Why not something else?
* When do you succeed?

* When do you fail?
* When can | trust you?
* How do | correct an error?



l Explainability Issue

Black-box Al creates confusion and doubt
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The Need for Explainable Recommendation

Yongfeng Zhang, et.al, Explainable Recommendation: A Survey and New Perspectives, 2020.



l Explainability Issue

Tomorrow
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User with
a Task

* | understand why

* | understand why not

* | know when you'll succeed
* | know when you'll fail

* | know when to trust you

| know why you erred



I Discrimination & Fairness Issue

Job recommendation
(Lambrecht et al., 2019)

Lambrecht, et al. "Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads." 2019.
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Bias and Debias in Recommender System: A Survey and Future Directions, 2021.
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I Non-discrimination & Fairness

= A recommender system should avoid discriminatory behaviors in
human-machine interaction.

= A recommender system should ensure fairness in decision-making.




} Safety & Robustness Issue
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IAuditabi\ity & Accountability

= Accountability Violent movie

Accountability: A clear responsibility distribution, which focuses on who
should take the responsibility for what impact of recommender systems.
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IAuditabi\ity & Accountability

= Five roles in Recommender Systems

System
Designers

System Decision
Deployers Makers

System
End Users Auditors

It is necessary to determine the roles and the corresponding responsibility of
different parties in the function of a recommender system.
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Safety Explainability Non-discrimination Accountability
& Robustness & Fairness & Auditability

q ?,@ How do these five dimensions influence each other?

There exist both accordance and the conflicts among the five dimensions.
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https://arxiv.org/abs/2107.06641

Trustworthy Al: A Computational Perspective
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Tutorial website: https://sites.google.com/msu.edu/trustworthy-ai/home
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