

Fundamentals of Deep Recommender Systems

Wenqi Fan

The Hong Kong Polytechnic University

https://wenqifan03.github.io, wenqifan@polyu.edu.hk

Tutorial website: <u>https://advanced-recommender-systems.github.io/ijcai2021-tutorial/</u>

A General Architecture of Deep Recommender System 🍪 💷

NeuMF unifies the strengths of MF and MLP in modeling user-item interactions.

- **MF** uses an inner product as the interaction function
- **MLP** is more sufficient to capture the complex structure of user interaction data

Neural Collaborative Filtering, WWW, 2017

- □ The wide linear models can memorize seen feature interactions using cross-product feature transformations.
- The deep models can generalize to previously unseen feature interactions through low- dimensional embeddings.

Wide & Deep Learning for Recommender Systems, 1st DLRS, 2016

Neural FM

Neural Factorization Machines (NFMs) "deepens" FM by placing hidden layers above second-order feature interaction modeling.

Neural FM

Neural Factorization Machines (NFMs) "deepens" FM by placing hidden layers above second-order Prediction Score feature interaction modeling. Layer L **Hidden Layers** Layer 2 "Deep layers" learn higher-order feature Layer 1 interactions only, being much easier to train. **Bi-Interaction Pooling B-Interaction Layer** ٧, **Embedding Layer Bilinear Interaction Pooling:** $f_{BI}(V_x) = \sum_{i=1}^{n} \sum_{i=i\pm 1}^{n} x_i \mathbf{v}_i \odot x_j \mathbf{v}_j \checkmark$ 0.2 0 Input Feature Vector (sparse) 0 0 0 categorical variables

Neural Factorization Machines for Sparse Predictive Analytics, SIGIR, 2017

DeepFM ensembles FM and DNN and to low- and high-order feature interactions simultaneously from the input raw features.

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, IJCAI, 2017

DeepFM ensembles FM and DNN and to low- and high-order feature interactions simultaneously from the input raw features.

DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, IJCAI, 2017

DSCF

Collaborative Filtering with users' social relations (Social Recommendation)

Deep Social Collaborative Filtering, RecSys, 2019

Cityu Cityu

DSCF

Collaborative Filtering with users' social relations (Social Recommendation)

Users might be affected by direct/distant neighbors.

- Information diffusion
- Users with high reputations

Deep Social Collaborative Filtering, RecSys, 2019

CityU CityU

DSCF

Collaborative Filtering with users' social relations (Social Recommendation)

Users might be affected by direct/distant neighbors.

- Information diffusion
- Users with high reputations

User Embedding Rating Embedding

Item Embedding

Output Layer

DASO

CityU CityU

Collaborative Filtering with users' social relations (Social Recommendation)

User behave and interact differently in the item/social domains.

CityU CityU

DASO

Collaborative Filtering with users' social relations (Social Recommendation)

User behave and interact differently in the item/social domains.

O - Learning separated user representations in two domains.

CityU CityU

DASO

Collaborative Filtering with users' social relations (Social Recommendation)

User behave and interact differently in the item/social domains.

- Learning separated user representations in two domains.

Bidirectional Knowledge Transfer with Cycle Reconstruction

$$\begin{split} \mathbf{p}_{i}^{I} &\to h^{I \to S}(\mathbf{p}_{i}^{I}) \to h^{S \to I}(h^{I \to S}(\mathbf{p}_{i}^{I})) \approx \mathbf{p}_{i}^{I} \\ \mathcal{L}_{cyc}(h^{S \to I}, h^{I \to S}) &= \sum_{i=1}^{N} \left(\left\| h^{S \to I}(h^{I \to S}(\mathbf{p}_{i}^{I})) - \mathbf{p}_{i}^{I} \right\|_{2} + \left\| h^{I \to S}(h^{S \to I}(\mathbf{p}_{i}^{S})) - \mathbf{p}_{i}^{S} \right\|_{2} \right) \end{split}$$

Optimization for Ranking Tasks

□ Negative Sampling's Main Issue:

• It often generates low-quality negative samples that do not help you learn good representation.

Optimization for Ranking Tasks

Negative Sampling's Main Issue:

• It often generates low-quality negative samples that do not help you learn good representation [Cai and Wang, 2018; Wang *et al.*, 2018b].

Optimization for Ranking Tasks

Negative Sampling's Main Issue:

• It often generates low-quality negative samples that do not help you learn good representation [Cai and Wang, 2018; Wang *et al.*, 2018b].

Item Domain Discriminator Model

Discriminator

Goal: distinguish real user-item pairs (i.e., real samples) and the generated "fake" samples (relevant)

$$D^{I}(u_{i}, v_{j}; \phi_{D}^{I}) = \sigma(f_{\phi_{D}^{I}}^{I}(\mathbf{x}_{i}^{I}, \mathbf{y}_{j}^{I})) = \frac{1}{1 + exp(-f_{\phi_{D}^{I}}^{I}(\mathbf{x}_{i}^{I}, \mathbf{y}_{j}^{I}))}$$
(Sigmoid)

Score function:

$$f^{I}_{\phi^{I}_{D}}(\mathbf{x}_{i}^{I}, \mathbf{y}_{j}^{I}) = (\mathbf{x}_{i}^{I})^{T} \mathbf{y}_{j}^{I} + a_{j},$$

Item Domain Generator Model

21

Generator Model

Goal:

- 1. Approximate the underlying real conditional distribution **p**^I_{real}(**v** | **u**_i)
- 2. Generate (select/sample) the most relevant items for any given user u_i.

Sequential (Session-based) Recommendation

Session-based Recommendations with Recurrent Neural Networks, ICLR, 2016. BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer, CIKM, 2019.

Sequential (Session-based) Recommendation

Session-based Recommendations with Recurrent Neural Networks, ICLR, 2016.

BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer, CIKM, 2019.

Sequential (Session-based) Recommendation

Session-based Recommendations with Recurrent Neural Networks, ICLR, 2016.

BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer, CIKM, 2019.

Shortcomings of Existing Deep Recommender Systems 🐼 🥯

Recommendation Policies

- Offline optimization
- Short-term reward

Shortcomings of Existing Deep Recommender Systems 🖉 🥸

Recommendation Policies

- Offline optimization
- Short-term reward

among instances

Shortcomings of Existing Deep Recommender Systems 2

Recommendation Policies

- Offline optimization
- Short-term reward

Graph-structured Data

 Information isolated island Issue: ignore implicit/explicit relationships among instances

Manually Deisgned Architectures

- Expert knowledge
- Time and engineering efforts

Shortcomings of Existing Deep Recommender Systems 🖉 🚵

Recommendation Policies

- Offline optimization
- Short-term reward

Graph-structured Data

 Information isolated island Issue: ignore implicit/explicit relationships among instances

Manually Deisgned Architectures

- Expert knowledge
- Time and engineering efforts

Poisoning attacks:

- Promote/demote items
- White/grey/black-box attacks