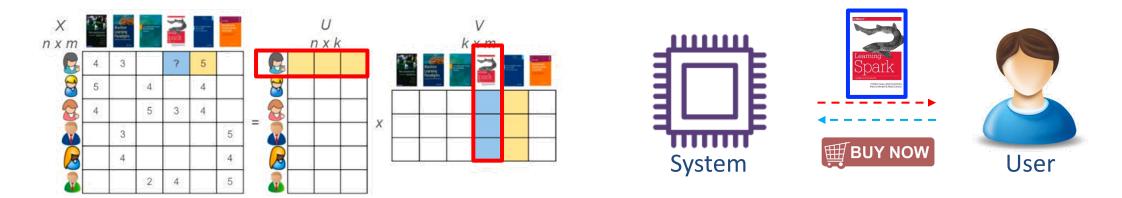


Reinforcement Learning for Recommender Systems

Xiangyu Zhao Data Science and Engineering Lab Michigan State University <u>www.cse.msu.edu/~zhaoxi35</u>, <u>zhaoxi35@msu.edu</u>

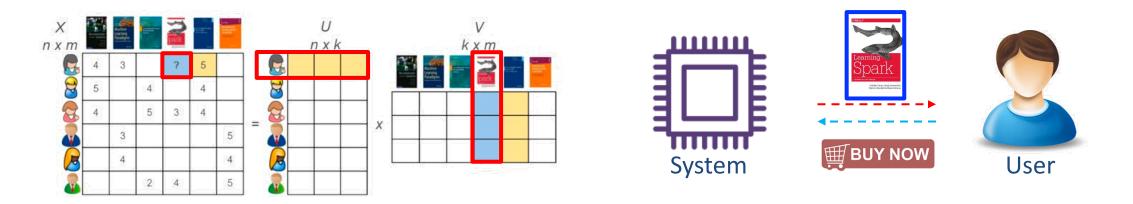
Intelligent system that assists users' information seeking tasks

Goal: Suggesting items that best match users' preferences



Existing Recommendation Policies

- Considering recommendation as an offline optimization problem
- Following a greedy strategy to maximize the immediate rewards from users

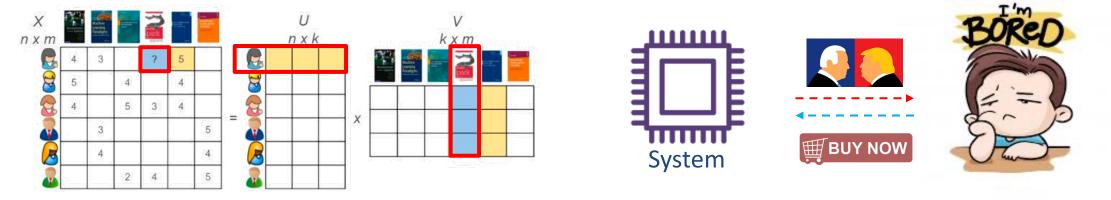


Disadvantages

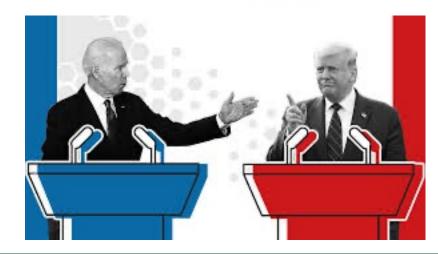
- Overlooking real-time feedback
- Overlooking the long-term influence on user experience

Existing Recommendation Policies

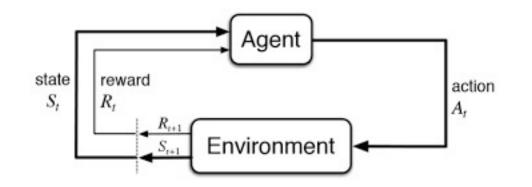
- Formate
- Considering recommendation as an offline optimization problem
- Following a greedy strategy to maximize the immediate rewards from users



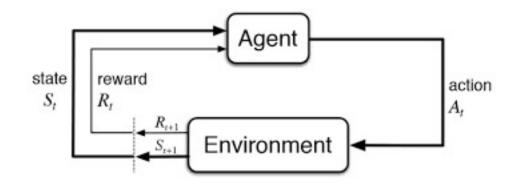
- Disadvantages
 - Overlooking real-time feedback
 - Overlooking the long-term influence on user experience



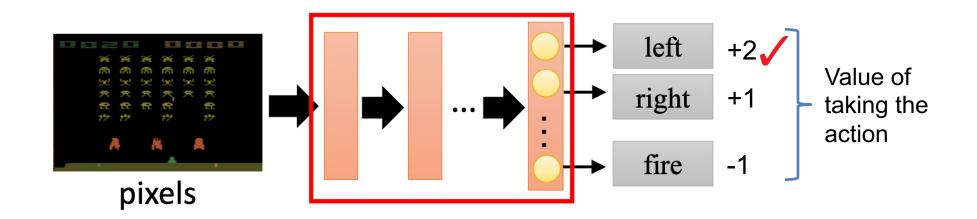
• Goal: selecting actions to maximize future reward



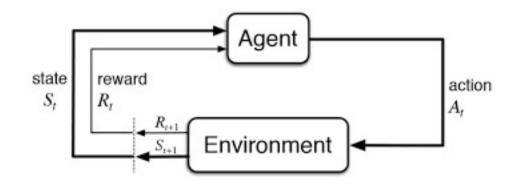
• Goal: selecting actions to maximize future reward



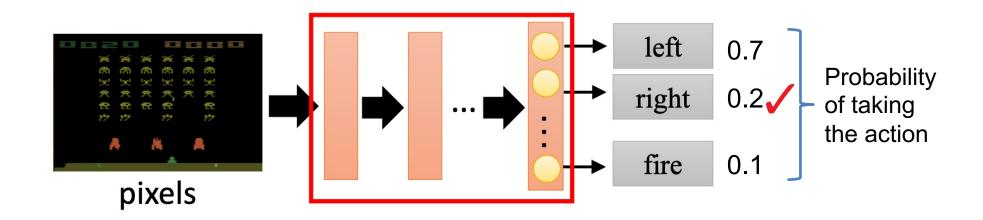
Value-based Reinforcement Learning



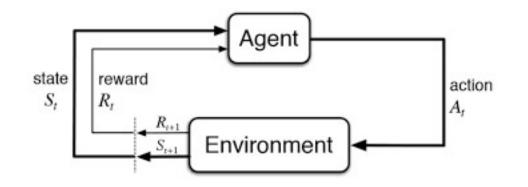
Goal: selecting actions to maximize future reward



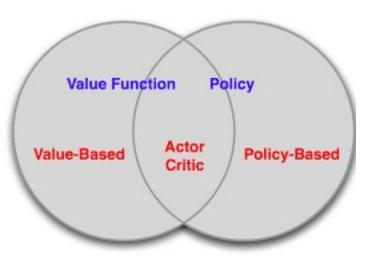
Policy-based Reinforcement Learning



Goal: selecting actions to maximize future reward

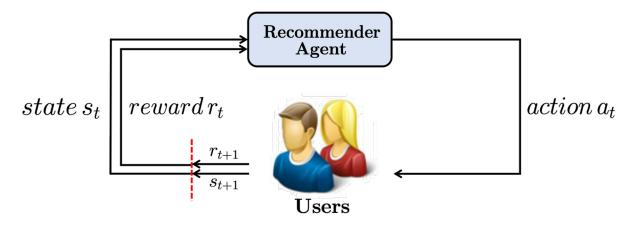


Actor-Critic



Reinforcement Learning for Recommendation Policies 🛞 😵 🕌

Continuously updating the recommendation strategies during the interactions



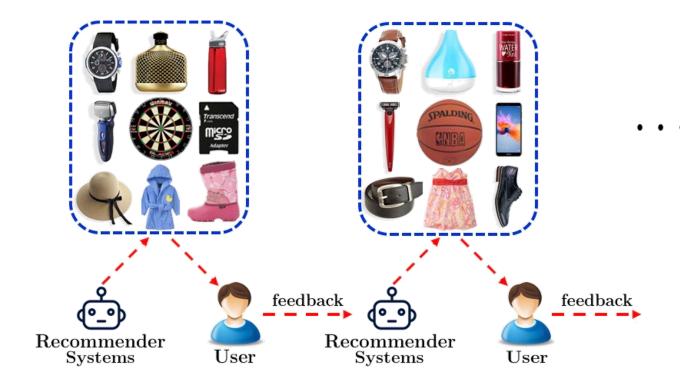
Maximizing the long-term reward from users

Outline

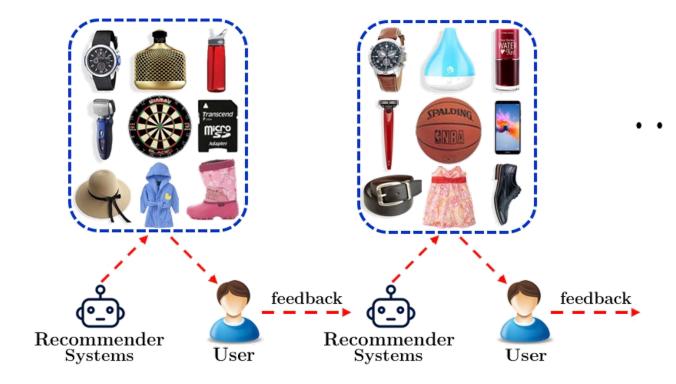
Recommendations in Single Scenario

- DeepPage Deep Reinforcement Learning for Page-wise Recommendations (RecSys'2018)
- DEERS Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD'2018)
- DRN A Deep Reinforcement Learning Framework for News Recommendation (WWW'2018)
- Recommendations in Multiple Scenarios
 - DeepChain Whole-Chain Recommendations (CIKM'2020)
 - MA-RDPG Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning (WWW'2018)
 - RAM Jointly Learning to Recommend and Advertise (KDD'2020)
 - DEAR Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI'2021)
- Online Environment Simulator
 - UserSim User Simulation via Supervised Generative Adversarial Network (WWW'2021)
- Surveys
 - Deep Reinforcement Learning for Search, Recommendation, and Online Advertising: A Survey (SIGWEB'2019)
 - Reinforcement Learning based Recommender Systems: A Survey (Arxiv'2021)

User-System Interactions

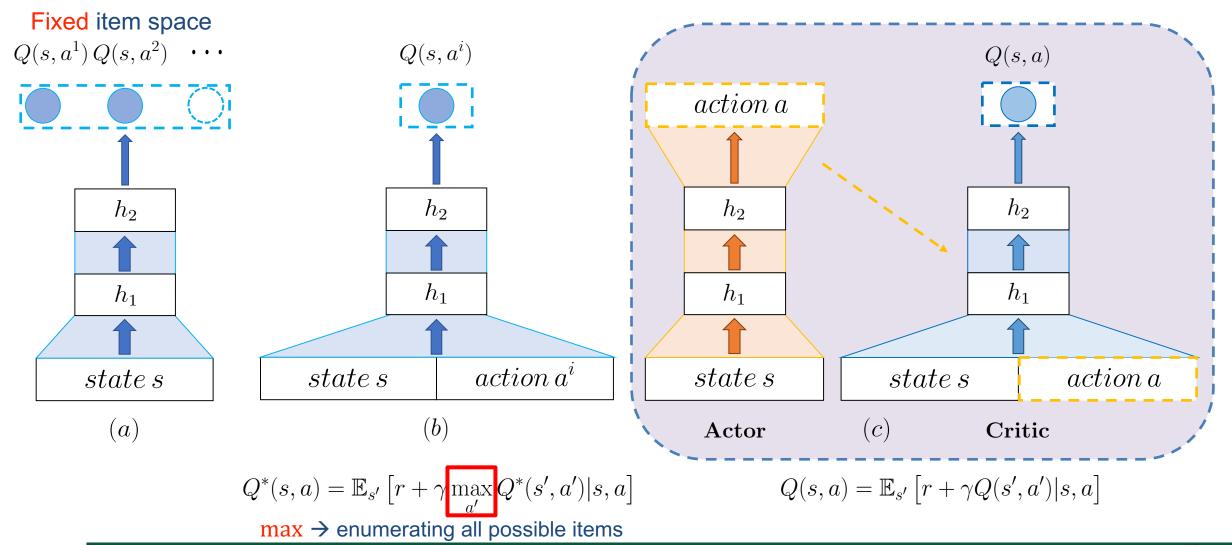


- The system recommends a page of items to a user
- The user provides real-time feedback and the system updates its policy
- The system recommends a new page of items



- Updating strategy according to user's real-time feedback
- Diverse and complementary recommendations
- Displaying items in a 2-D page

Actor-Critic

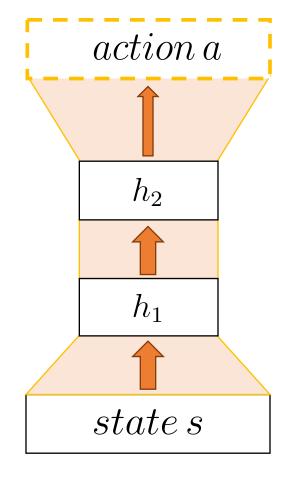


Data Science and Engineering Lab

Actor Design

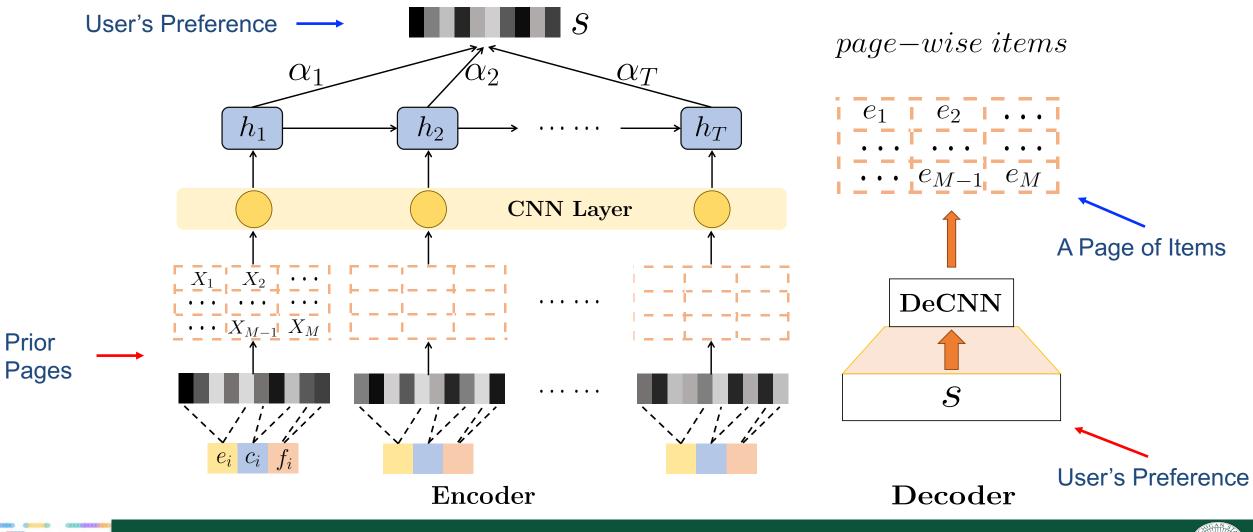
 Goal: Generating a page of recommendations according to user's browsing history

- Challenges
 - Preference from real-time feedback
 - A set of complementary items
 - Displaying items in a page

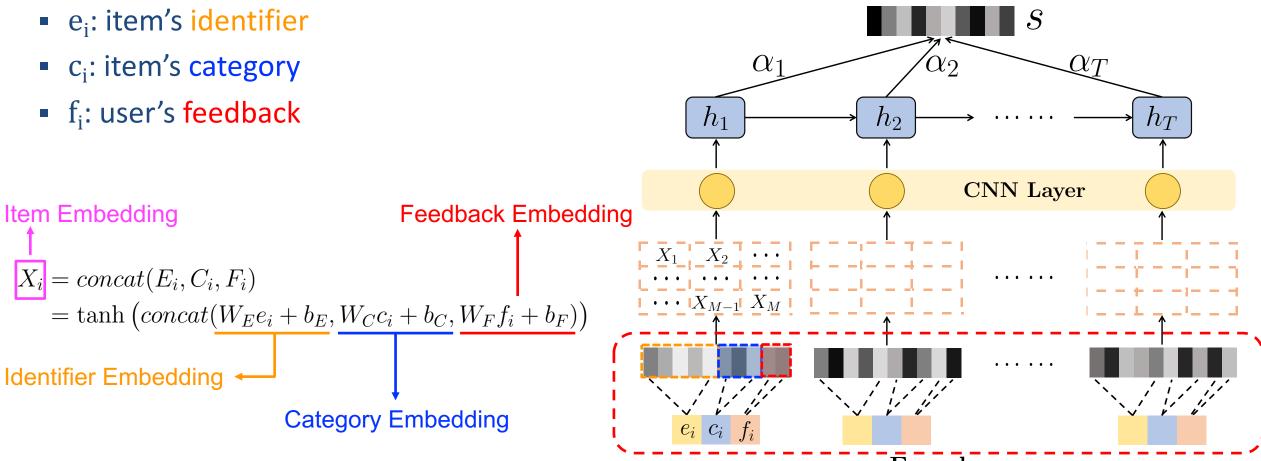


Actor Architecture

Goal: Generating a page of items according to user's browsing history

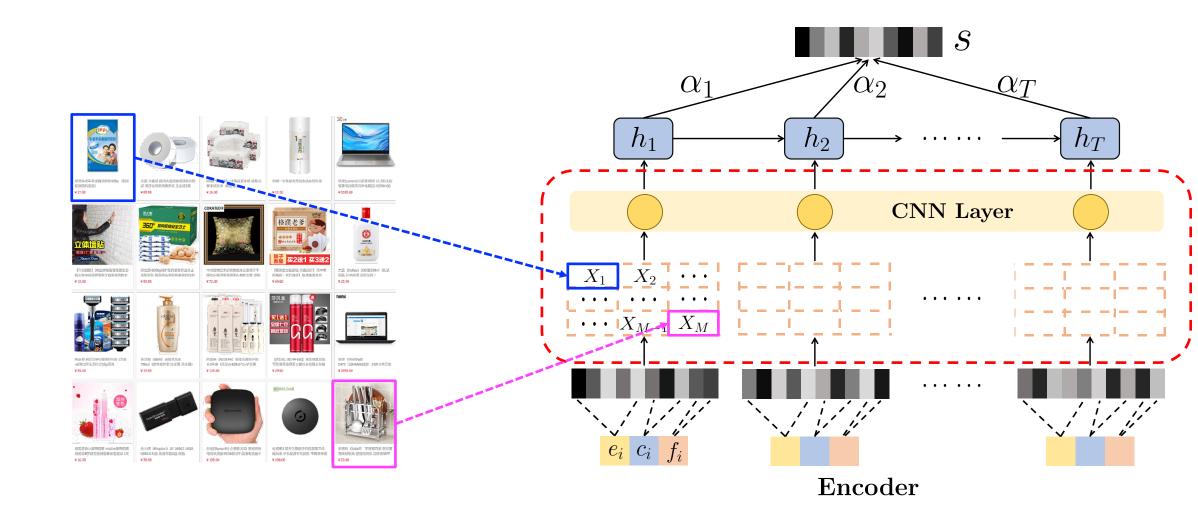


Embedding Layer

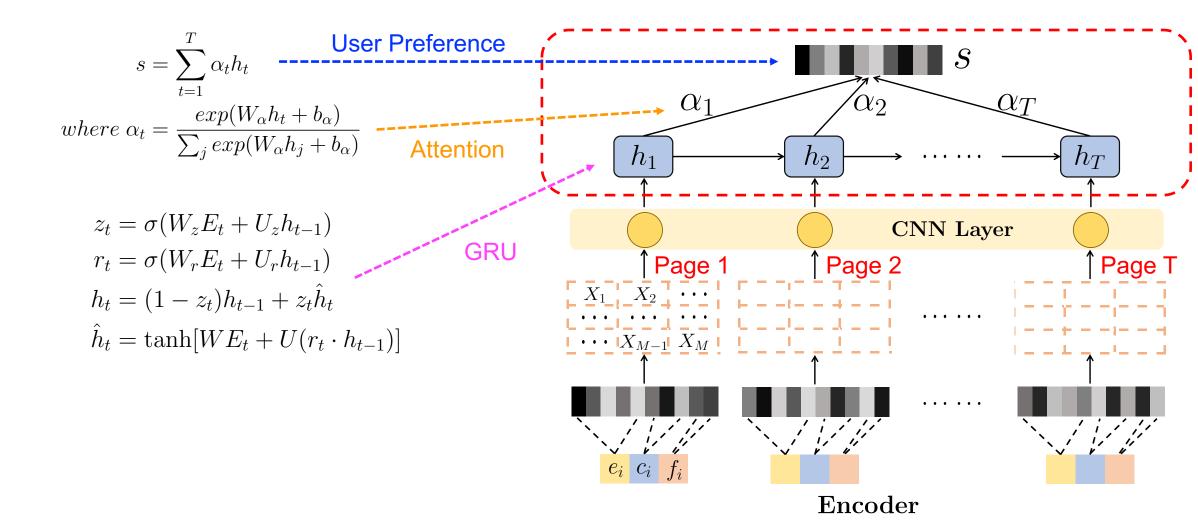


Encoder

Page-wise CNN Layer

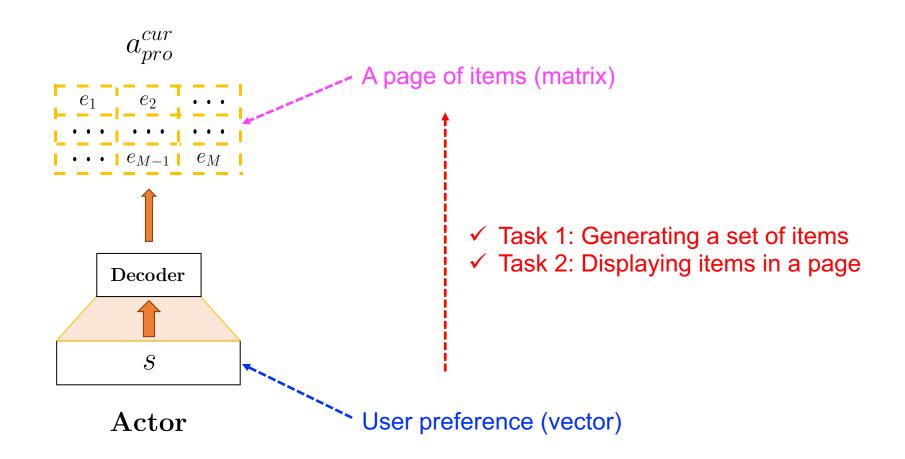


RNN & Attention Layer



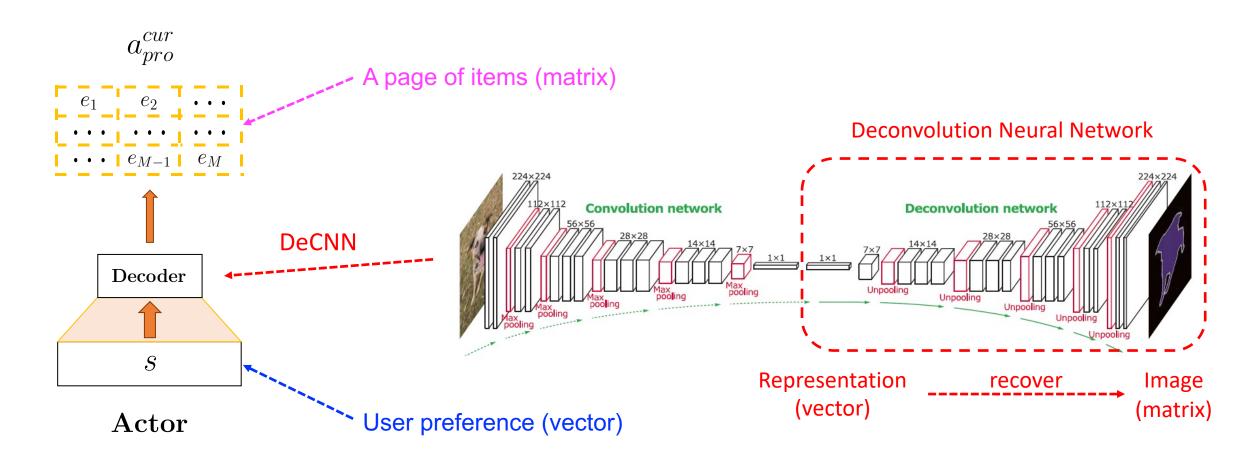
Decoder

Goal: Generating a page of items according to user's preference



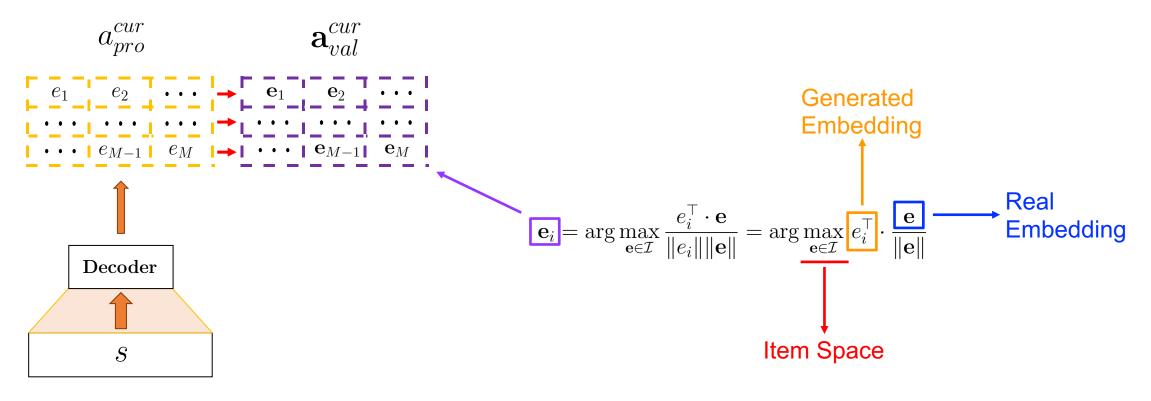
Decoder

Goal: Generating a page of items according to user's preference



Decoder

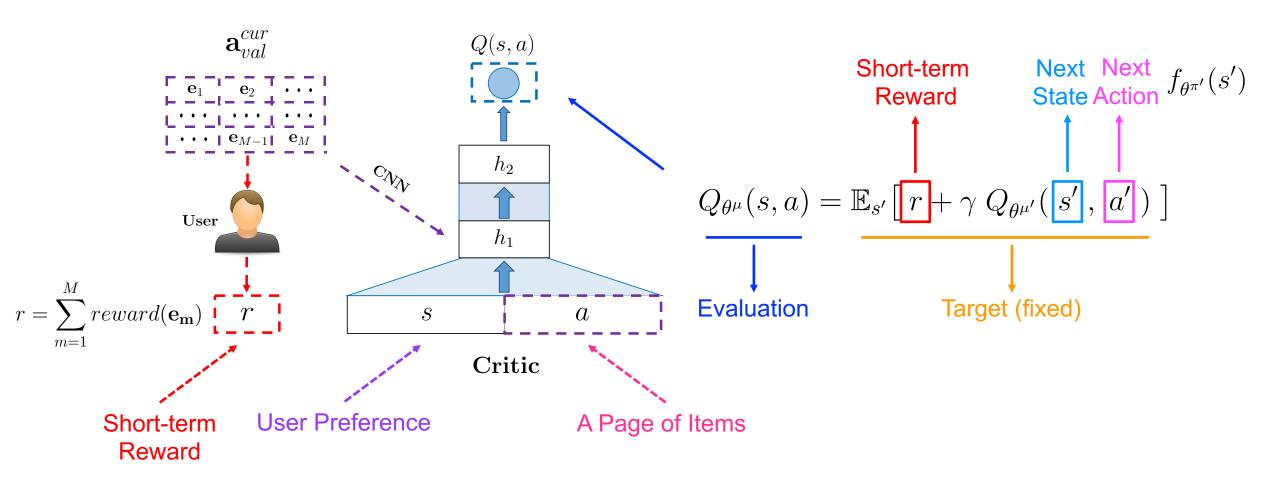
■ Generated Embeddings → Real Embeddings



Actor

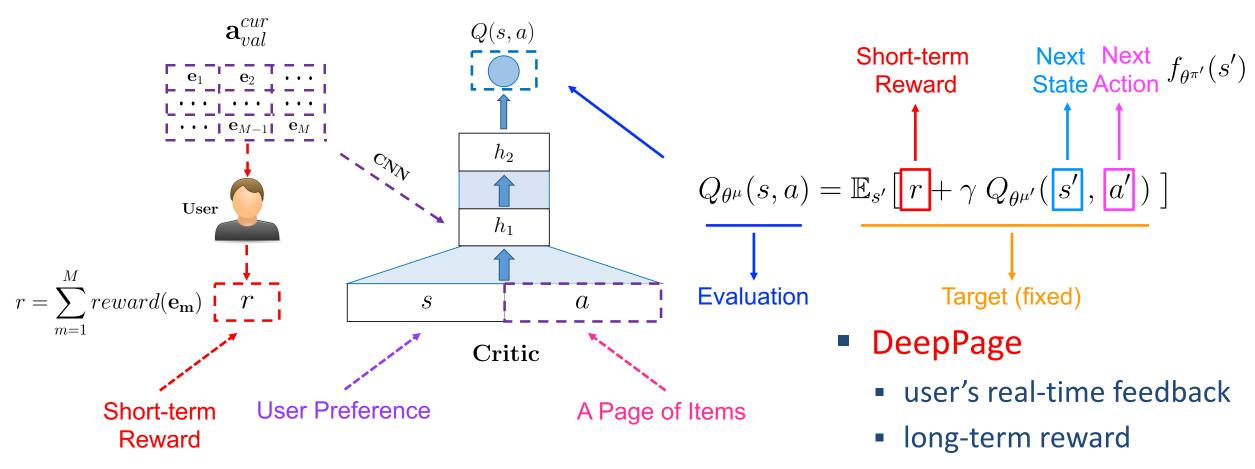
Critic Architecture

• Learning action-value function Q(s, a)



Critic Architecture

• Learning action-value function Q(s, a)



putting items in a page

Outline

- Recommendations in Single Scenario
 - DeepPage Deep Reinforcement Learning for Page-wise Recommendations (RecSys'2018)
 - DEERS Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD'2018)
 - DRN A Deep Reinforcement Learning Framework for News Recommendation (WWW'2018)
- Recommendations in Multiple Scenarios
 - DeepChain Whole-Chain Recommendations (CIKM'2020)
 - MA-RDPG Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning (WWW'2018)
 - RAM Jointly Learning to Recommend and Advertise (KDD'2020)
 - DEAR Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI'2021)
- Online Environment Simulator
 - UserSim User Simulation via Supervised Generative Adversarial Network (WWW'2021)
- Surveys
 - Deep Reinforcement Learning for Search, Recommendation, and Online Advertising: A Survey (SIGWEB'2019)
 - Reinforcement Learning based Recommender Systems: A Survey (Arxiv'2021)

- .

Positive: click or purchase

Negative: skip or leave

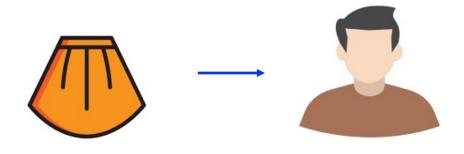
- Advantage:
 - Avoiding bad recommendation cases

- Negative feedback could bury the positive ones
- May not be caused by users disliking them
- Weak/wrong negative feedback can introduce noise

Why Negative Feedback?

What users may not like

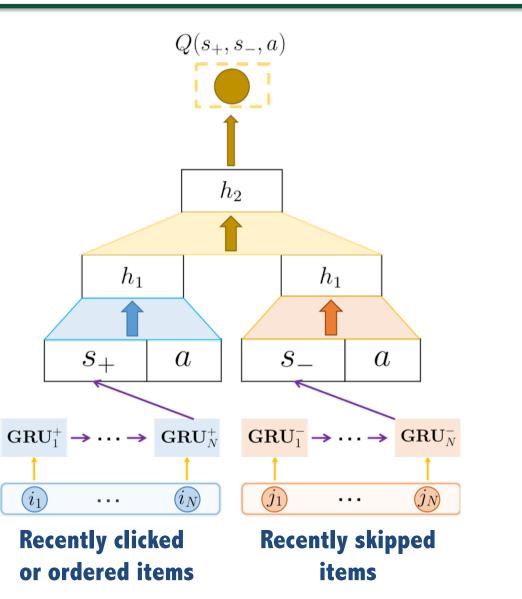
Founded



Novel DQN Architecture

Intuition:

- recommend an item that is similar to the clicked/ordered items (left part)
- while dissimilar to the skipped items (right part)
- RNN with Gated Recurrent Units (GRU) to capture users' sequential preference



 Recommender systems often recommends items belong to the same category (e.g., cell phone), while users click/order a part of them and skip others

		4	Time	State	Item	Category	Feedback
•			1	<i>s</i> ₁	a_1	А	skip
			2	<i>s</i> ₂	a_2	В	click
			3	S 3	a_3	А	click
			4	S 4	a_4	С	skip
			5	S 5	a_5	В	skip
			6	s 6	a_6	А	skip
			7	s ₇	a_7	С	order

- The partial order of user's preference over these two items in category B
- At time 2, we name a5 as the competitor item of a2

$$L(\theta) = \mathbb{E}_{s,a,r,s'} \left[\left(y - Q(s_+, s_-, a; \theta) \right)^2 - \alpha \left(Q(s_+, s_-, a; \theta) - Q(s_+, s_-, a^E; \theta) \right)^2 \right]$$

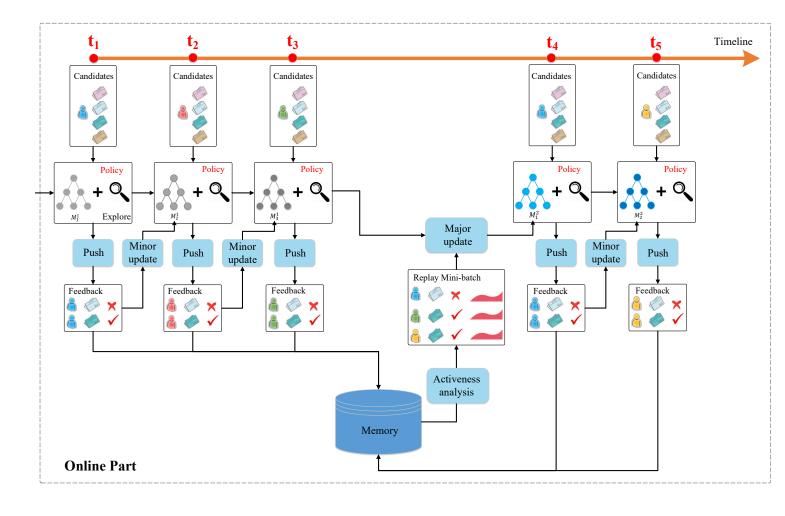
Outline

- Recommendations in Single Scenario
 - DeepPage Deep Reinforcement Learning for Page-wise Recommendations (RecSys'2018)
 - DEERS Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD'2018)
 - DRN A Deep Reinforcement Learning Framework for News Recommendation (WWW'2018)
- Recommendations in Multiple Scenarios
 - DeepChain Whole-Chain Recommendations (CIKM'2020)
 - MA-RDPG Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning (WWW'2018)
 - RAM Jointly Learning to Recommend and Advertise (KDD'2020)
 - DEAR Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI'2021)
- Online Environment Simulator
 - UserSim User Simulation via Supervised Generative Adversarial Network (WWW'2021)
- Surveys
 - Deep Reinforcement Learning for Search, Recommendation, and Online Advertising: A Survey (SIGWEB'2019)
 - Reinforcement Learning based Recommender Systems: A Survey (Arxiv'2021)

Framework

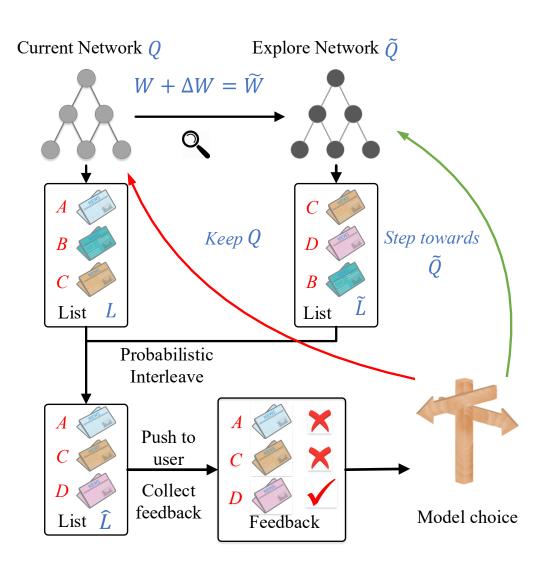
Push

- Feedback
- Minor Update
- Major Update



Effective Exploration

- Random exploration
 - Harm the user experience in short term
- Multi-armed Bandit
 - Large variance
 - Long time to converge
- Steps
 - Get recommendation from Q and \tilde{Q}
 - Probabilistic interleave these two lists
 - Get feedback from user and compare the performance of two network
 - If \tilde{Q} performs better, update Q towards it

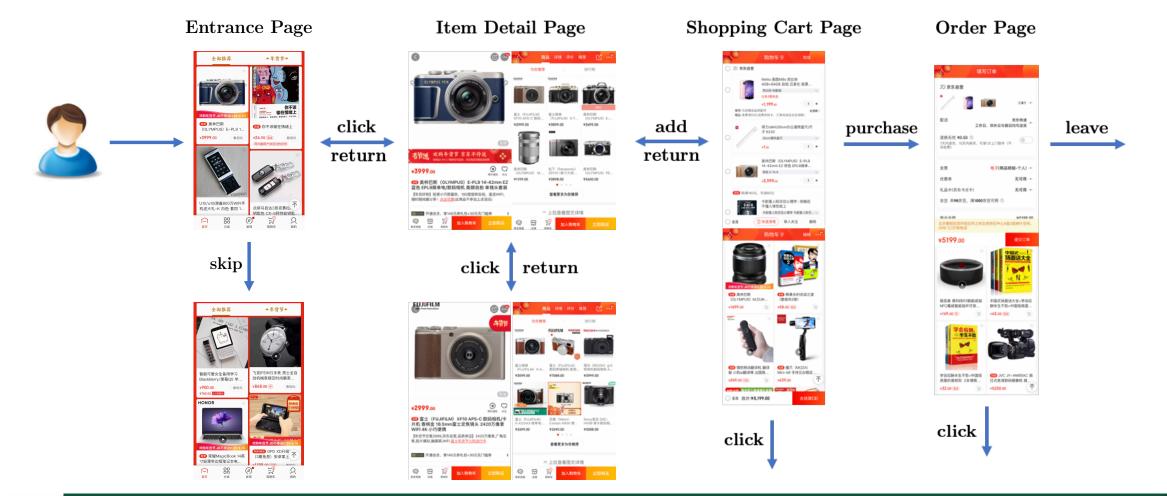


Outline

- Recommendations in Single Scenario
 - DeepPage Deep Reinforcement Learning for Page-wise Recommendations (RecSys'2018)
 - DEERS Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD'2018)
 - DRN A Deep Reinforcement Learning Framework for News Recommendation (WWW'2018)
- Recommendations in Multiple Scenarios
 - DeepChain Whole-Chain Recommendations (CIKM'2020)
 - MA-RDPG Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning (WWW'2018)
 - RAM Jointly Learning to Recommend and Advertise (KDD'2020)
 - DEAR Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI'2021)
- Online Environment Simulator
 - UserSim User Simulation via Supervised Generative Adversarial Network (WWW'2021)
- Surveys
 - Deep Reinforcement Learning for Search, Recommendation, and Online Advertising: A Survey (SIGWEB'2019)
 - Reinforcement Learning based Recommender Systems: A Survey (Arxiv'2021)

Background

- Users sequentially interact with multiple scenarios
 - Different scenario has different objective



Motivation

- Optimizing each recommender agent for each scenario
 - Ignoring sequential dependency
 - Missing information
 - Sub-optimal overall objective

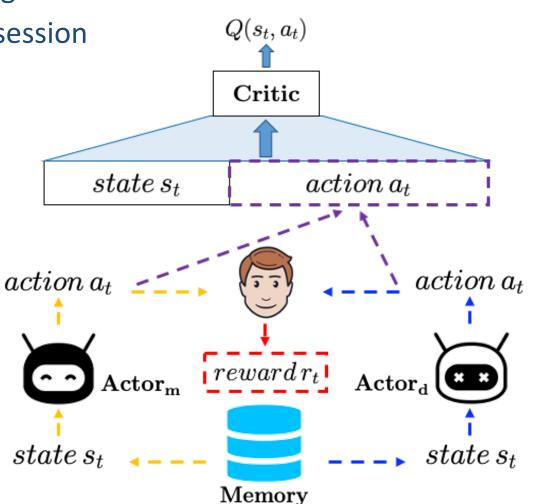
Entrance Page

Item Detail Page

Whole-Chain Recommendation

Goal

- Jointly optimizing multiple recommendation strategies
- Maximizing the overall performance of the whole session
- Advantages
 - Agents are sequentially activated
 - Agents share the same memory
 - Agents work collaboratively
- Actor-Critic
 - Actor: recommender agent in one scenario
 - Critic: controlling actors



Entrance Page

Actor_m

Item Detail Page

Entrance Page $y_t = \left[p_m^s(s_t, a_t) \cdot \gamma Q_{\mu'}(s_{t+1}, \pi'_m(s_{t+1})) + p_m^c(s_t, a_t) \cdot (r_t + \gamma Q_{\mu'}(s_{t+1}, \pi'_d(s_{t+1}))) + p_m^l(s_t, a_t) \cdot (r_t + \gamma Q_{\mu'}(s_{t+1}, \pi'_d(s_{t+1}))) \right]$

- 1st row: skip behavior
- 2nd row: click behavior
- 3rd row: leave behavior

Optimization

全部推荐

智能可爱女牛备用学5

① 荣耀MagicBook 1 寸轻薄窄边框笔记本电 *年貨首*

飞克(FEIKE)手表 男士全 动机械表镂空时尚腕表...

(3期免息)安卓掌上

 $\begin{aligned} \mathbf{Entrance Page} \\ y_t &= \left[p_m^s(s_t, a_t) \cdot \gamma Q_{\mu'}(s_{t+1}, \pi'_m(s_{t+1})) \\ &+ p_m^c(s_t, a_t) \cdot \left(r_t + \gamma Q_{\mu'}(s_{t+1}, \pi'_d(s_{t+1})) \right) \\ &+ p_m^l(s_t, a_t) \cdot r_t \right] \mathbf{1_m} \\ &+ \left[p_d^c(s_t, a_t) \cdot \left(r_t + \gamma Q_{\mu'}(s_{t+1}, \pi'_d(s_{t+1})) \right) \\ &+ p_d^s(s_t, a_t) \cdot \gamma Q_{\mu'}(s_{t+1}, \pi'_m(s_{t+1})) \\ &+ p_d^l(s_t, a_t) \cdot r_t \right] \mathbf{1_d} \end{aligned}$

Item Detail Page

Data Science and Engineering Lab

Why Model-based RL?

- **Advantages**
 - Reducing training data amount requirement
 - Performing accurate optimization of the Q-function

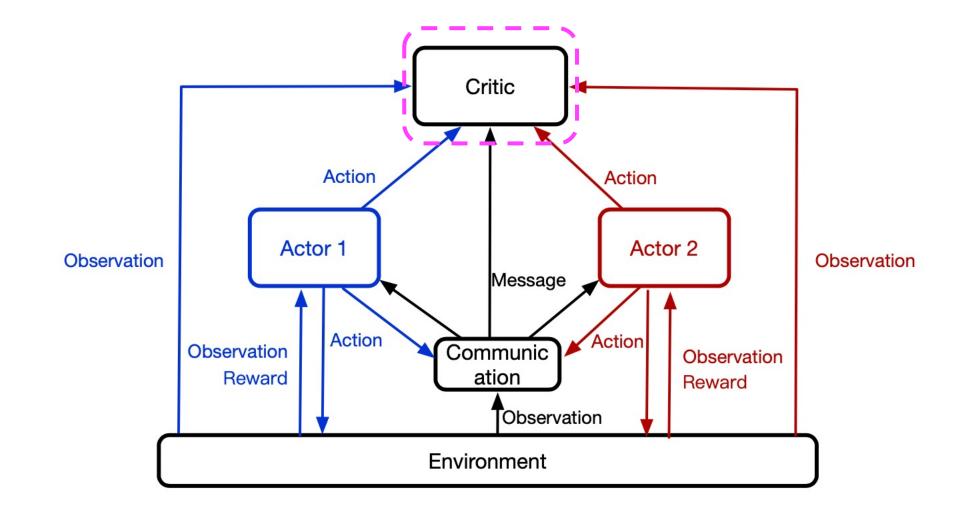
 $y_{t} = \left| p_{m}^{s}(s_{t}, a_{t}) \cdot \gamma Q_{\mu'}(s_{t+1}, \pi'_{m}(s_{t+1})) \right|$ + $p_m^c(s_t, a_t) \cdot (r_t + \gamma Q_{\mu'}(s_{t+1}, \pi'_d(s_{t+1})))$ + $p_m^l(s_t, a_t) \cdot r_t] \mathbf{1}_m$ + $\left[p_d^c(s_t, a_t) \cdot (r_t + \gamma Q_{\mu'}(s_{t+1}, \pi'_d(s_{t+1}))) \right]$ + $p_d^s(s_t, a_t) \cdot \gamma Q_{\mu'}(s_{t+1}, \pi'_m(s_{t+1}))$ + $p_d^l(s_t, a_t) \cdot r_t] \mathbf{1}_d$

Model-based

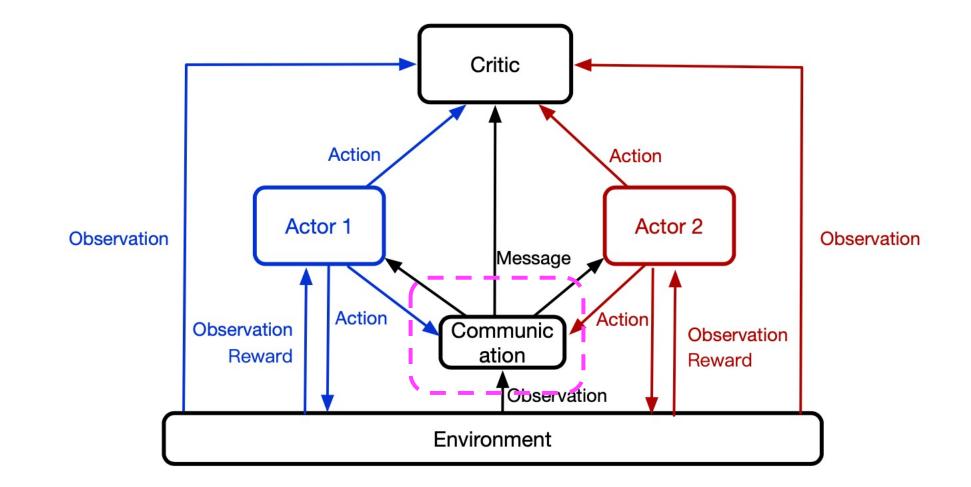
Outline

- Recommendations in Single Scenario
 - DeepPage Deep Reinforcement Learning for Page-wise Recommendations (RecSys'2018)
 - DEERS Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD'2018)
 - DRN A Deep Reinforcement Learning Framework for News Recommendation (WWW'2018)
- Recommendations in Multiple Scenarios
 - DeepChain Whole-Chain Recommendations (CIKM'2020)
 - MA-RDPG Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning (WWW'2018)
 - RAM Jointly Learning to Recommend and Advertise (KDD'2020)
 - DEAR Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI'2021)
- Online Environment Simulator
 - UserSim User Simulation via Supervised Generative Adversarial Network (WWW'2021)
- Surveys
 - Deep Reinforcement Learning for Search, Recommendation, and Online Advertising: A Survey (SIGWEB'2019)
 - Reinforcement Learning based Recommender Systems: A Survey (Arxiv'2021)

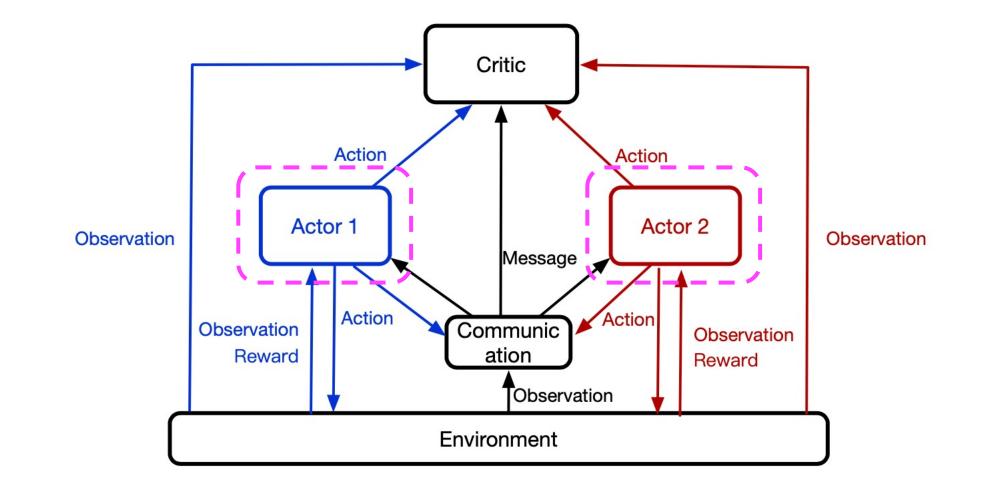
Overall Model Architecture



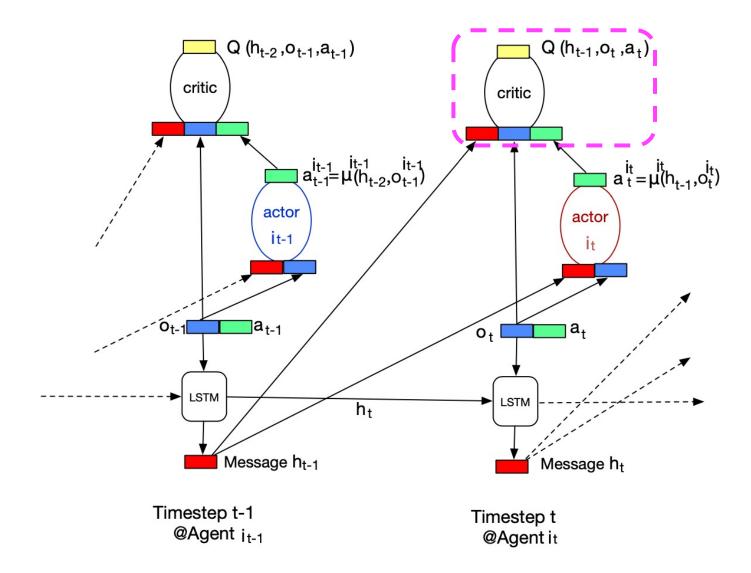
Overall Model Architecture



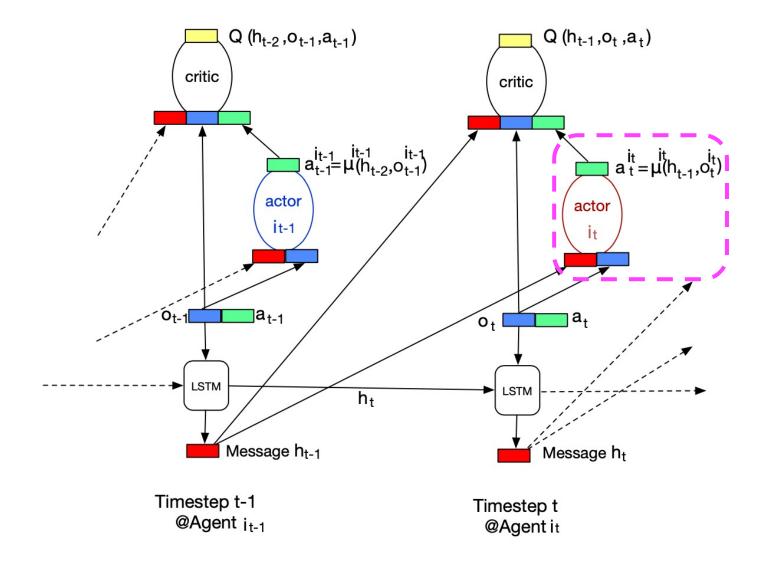
Overall Model Architecture



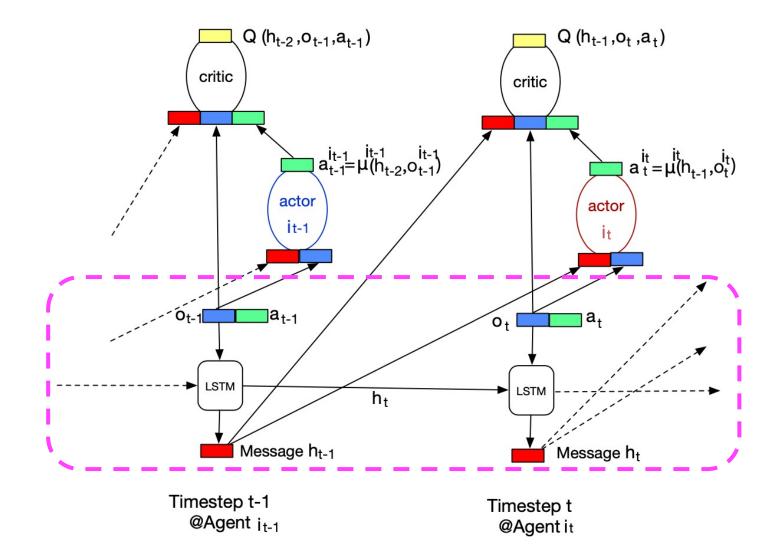
Detailed Structure of MA-RDPG



Detailed Structure of MA-RDPG



Detailed Structure of MA-RDPG



Outline

- Recommendations in Single Scenario
 - DeepPage Deep Reinforcement Learning for Page-wise Recommendations (RecSys'2018)
 - DEERS Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD'2018)
 - DRN A Deep Reinforcement Learning Framework for News Recommendation (WWW'2018)
- Recommendations in Multiple Scenarios
 - DeepChain Whole-Chain Recommendations (CIKM'2020)
 - MA-RDPG Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning (WWW'2018)
 - RAM Jointly Learning to Recommend and Advertise (KDD'2020)
 - DEAR Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI'2021)
- Online Environment Simulator
 - UserSim User Simulation via Supervised Generative Adversarial Network (WWW'2021)
- Surveys
 - Deep Reinforcement Learning for Search, Recommendation, and Online Advertising: A Survey (SIGWEB'2019)
 - Reinforcement Learning based Recommender Systems: A Survey (Arxiv'2021)

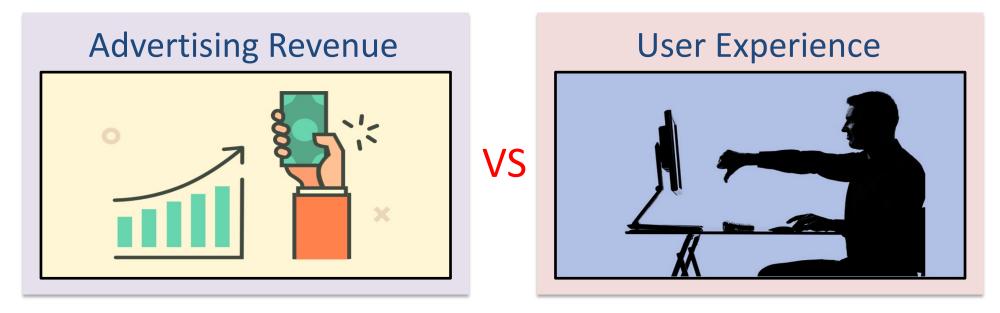
Reinforcement Learning for Advertisements

- Goal: maximizing the advertising impression revenue from advertisers
 - Assigning the right ads to the right users at the right place

- Reinforcement learning for advertisements
 - Continuously updating the advertising strategies & maximizing the long-term revenue

Reinforcement Learning for Advertisements

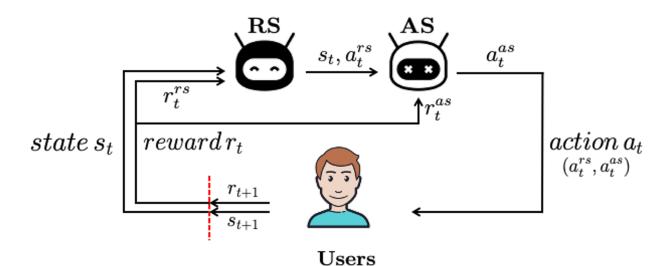
- Challenges:
 - Different teams, goals and models → suboptimal overall performance



- Goal:
 - Jointly optimizing advertising revenue and user experience
 - KDD'2020, AAAI'2021

Reinforcement Learning Framework

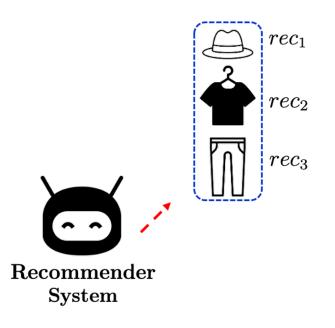
- Two-level Deep Q-networks:
 - first-level: recommender system (RS)
 - second-level: advertising system (AS)

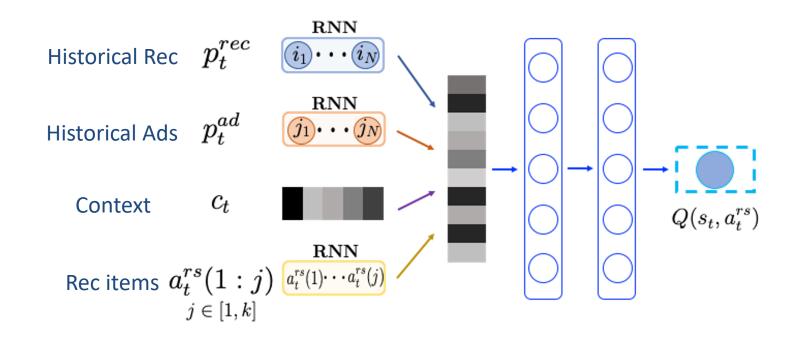


- State: rec/ads browsing history
- Action: $a_t = (a_t^{rs}, a_t^{as})$
- Reward: $r_t(s_t, a_t^{rs})$ and $r_t(s_t, a_t^{as})$
- Transition: s_t to s_{t+1}

Recommender System

- Goal: long-term user experience or engagement
- Challenge: combinatorial action space





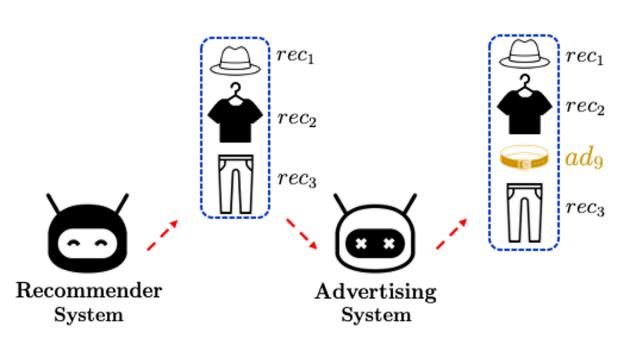
$$\binom{N}{k} \rightarrow O(kN)$$
 N: number of candidate items
k: length of rec-list

O(

Advertising System

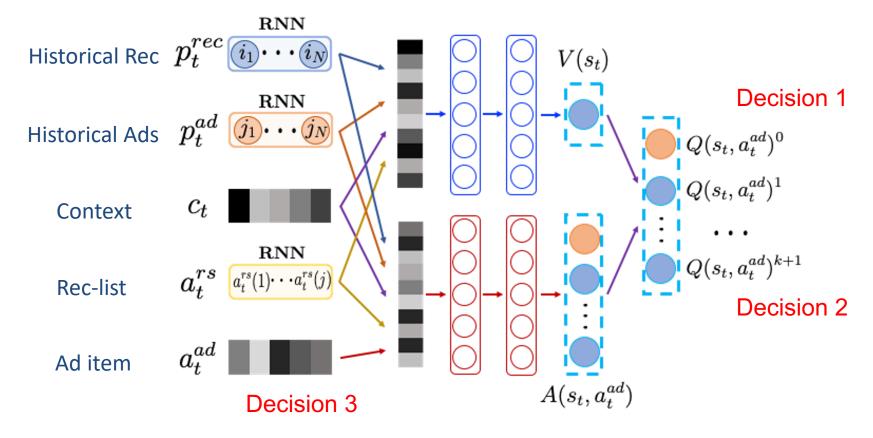
Goal:

- maximize the advertising revenue
- minimize the negative influence of ads on user experience
- Decisions:
 - interpolate an ad?
 - the optimal location
 - the optimal ad



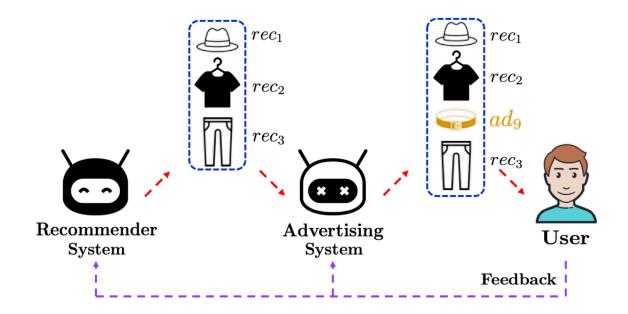
Novel DQN for AS

- Three decisions:
 - 1. interpolate an ad?
 - 2. the optimal location
 - 3. the optimal ad



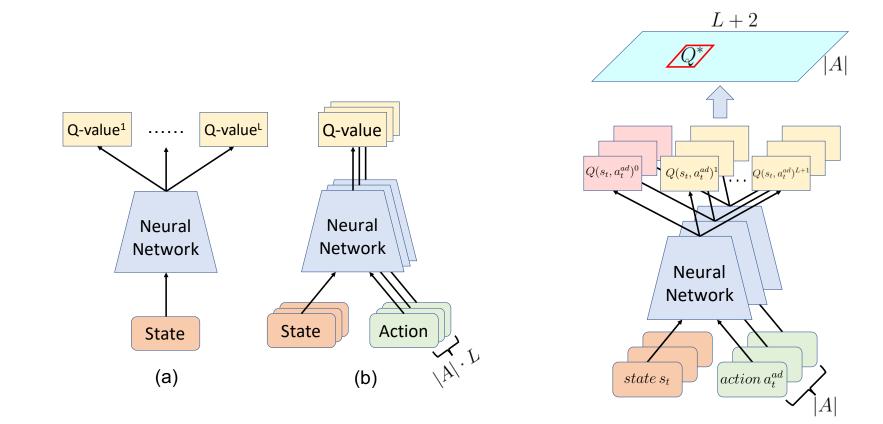
Systems Update

- Target User:
 - browses the mixed rec-ads list
 - provides her/his feedback



Advantage

The first individual DQN architecture that can simultaneously evaluate the Q-values of multiple levels' related actions



Experiments

- Metrics:
 - user dwelling time
 - number of videos browsed
 - advertising revenue

Tiktok short vi	deo dataset	Metrics	Values
Object	Quantity		value
# session	1,000,000	R ^{rs}	improv.(%) p-value
# user	188,409		value
# normal video	17,820,066	R^{as}	improv.(%)
# ad video	10,806,778		p-value
rec-list with ad	55.23%		value
		R^{rev}	improv (%)

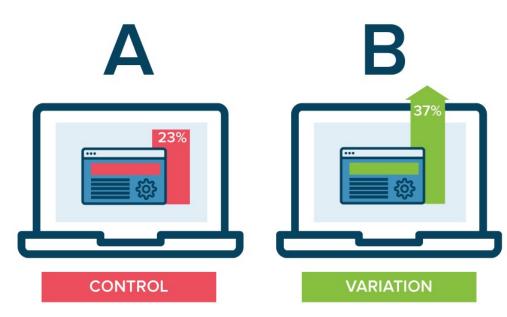
Overall performace

Metrics	Values			Alg	gorithms		
Metrics	values	W&D	DFM	GRU	DRQN	RAM-l	RAM-n
	value	17.61	17.95	18.56	18.99	19.61	19.49
R^{rs}	improv.(%)	11.35	9.25	5.66	3.26	-	0.61
	p-value	0.000	0.000	0.000	0.000	-	0.006
	value	8.79	8.90	9.29	9.37	9.76	9.68
R^{as}	improv.(%)	11.03	9.66	5.06	4.16	-	0.83
	p-value	0.000	0.000	0.000	0.000	-	0.009
	value	1.07	1.13	1.23	1.34	1.49	1.56
R^{rev}	improv.(%)	45.81	38.05	26.83	16.42	4.70	-
	p-value	0.000	0.000	0.000	0.000	0.001	-

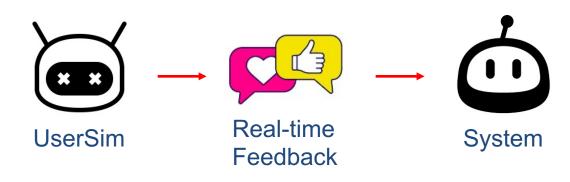
Outline

- Recommendations in Single Scenario
 - DeepPage Deep Reinforcement Learning for Page-wise Recommendations (RecSys'2018)
 - DEERS Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD'2018)
 - DRN A Deep Reinforcement Learning Framework for News Recommendation (WWW'2018)
- Recommendations in Multiple Scenarios
 - DeepChain Whole-Chain Recommendations (CIKM'2020)
 - MA-RDPG Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning (WWW'2018)
 - RAM Jointly Learning to Recommend and Advertise (KDD'2020)
 - DEAR Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI'2021)
- Online Environment Simulator
 - UserSim User Simulation via Supervised Generative Adversarial Network (WWW'2021)
- Surveys
 - Deep Reinforcement Learning for Search, Recommendation, and Online Advertising: A Survey (SIGWEB'2019)
 - Reinforcement Learning based Recommender Systems: A Survey (Arxiv'2021)

The most practical and precise way is online A/B test

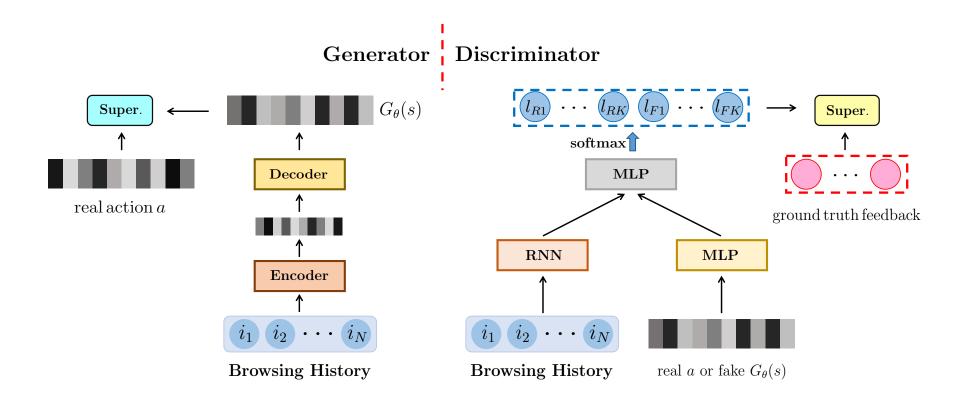


- Online A/B test is inefficient and expensive
 - Taking several weeks to collect sufficient data
 - Numerous engineering efforts
 - Bad user experience

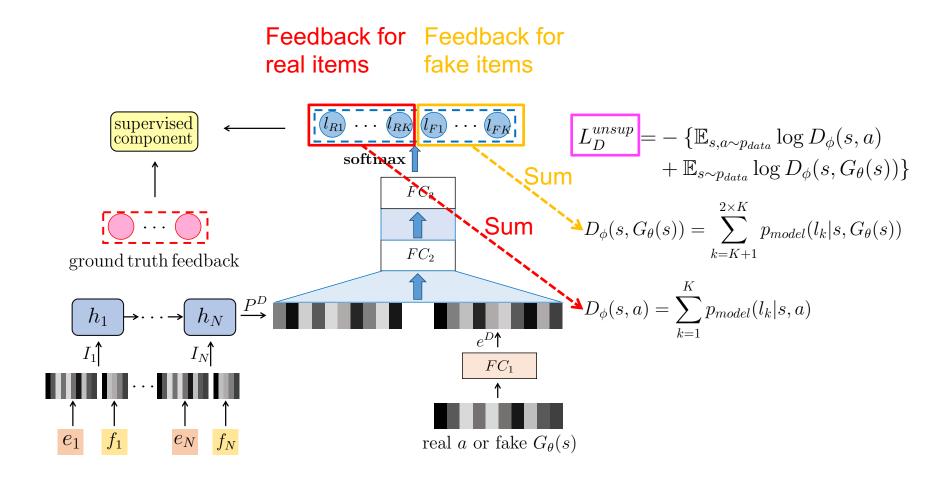


Overview

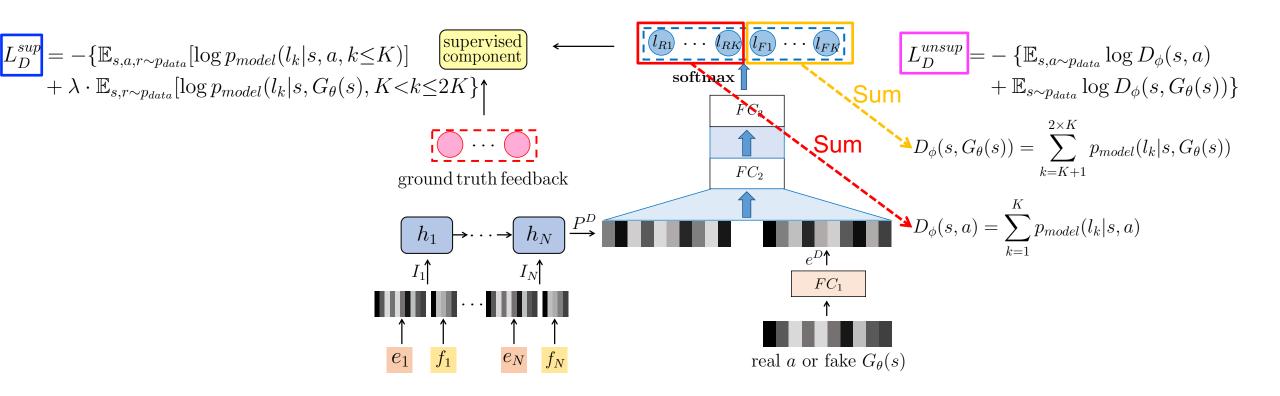
- Simulating users' real-time feedback is challenging
 - Underlying distribution of item sequences is extremely complex
 - Data available to each user is rather limited



Discriminator

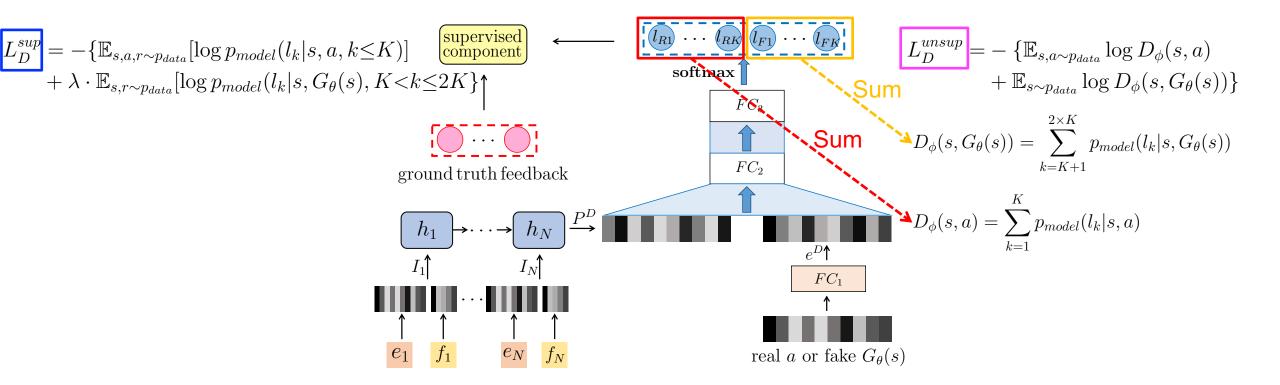


Discriminator

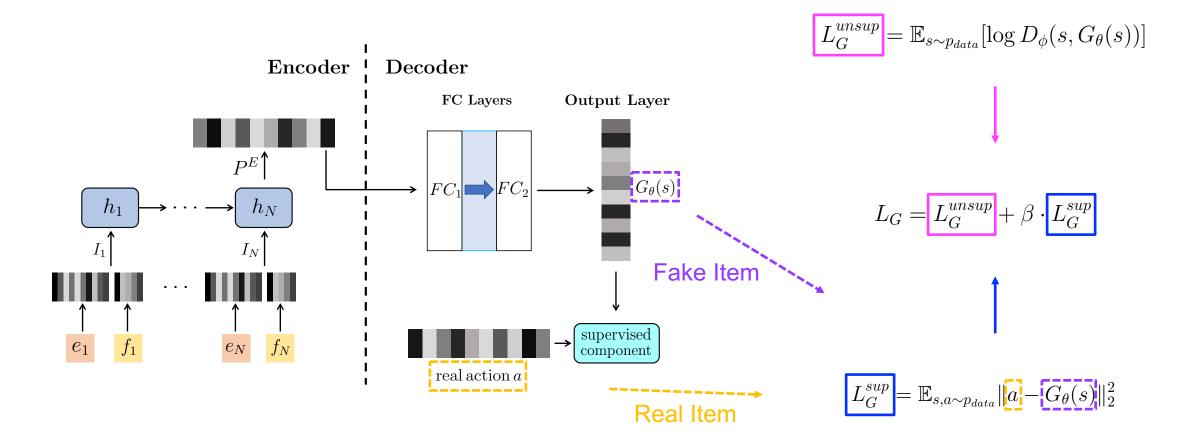


Discriminator

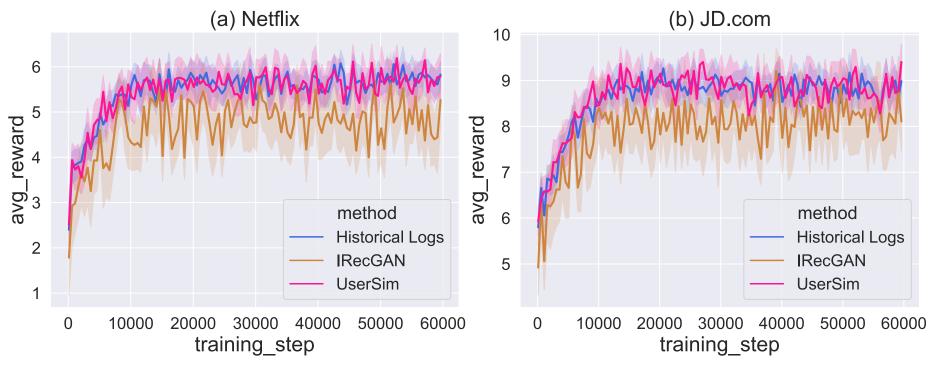
$$L_D = L_D^{unsup} + \alpha \cdot L_D^{sup}$$



Generator

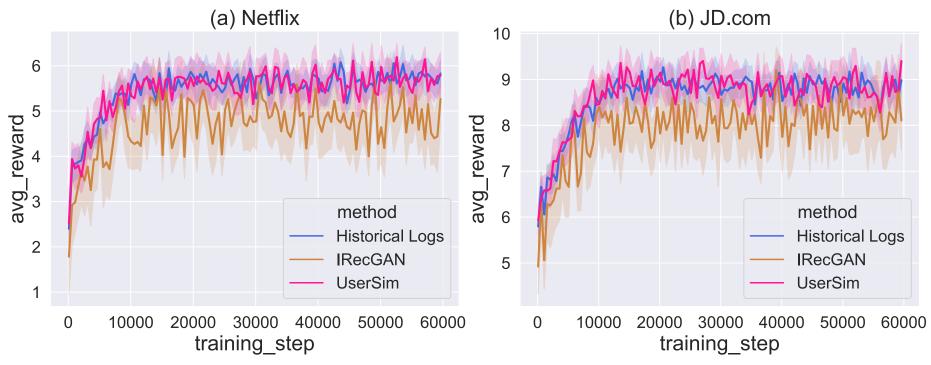


RL-based Recommender Training



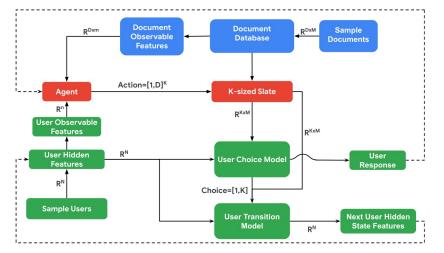
- Metric: average reward of a session
- Baselines: Historical Logs, IRecGAN

RL-based Recommender Training

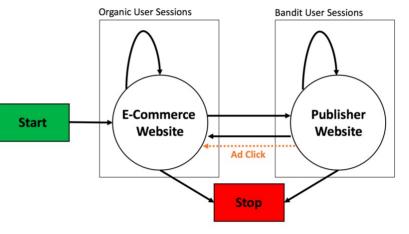


- Metric: average reward of a session
- Baselines: Historical Logs, IRecGAN
- UserSim converges to the similar avg_reward with the one upon historical data
- UserSim performs much more stably than the one trained based upon IRecGAN

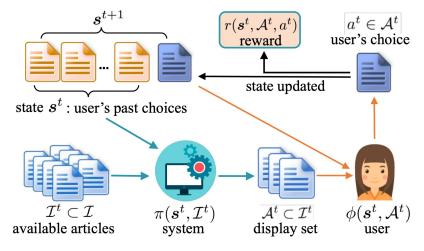
Other Simulators



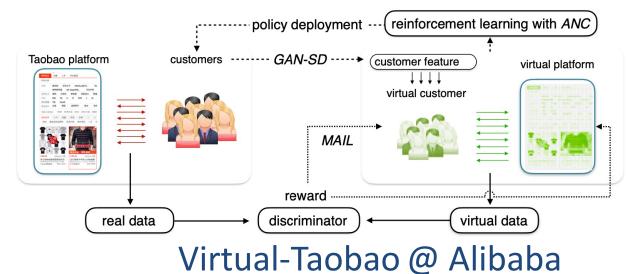
RecSim @ Google



RecoGym @ Criteo



GAN-PW @ Alibaba



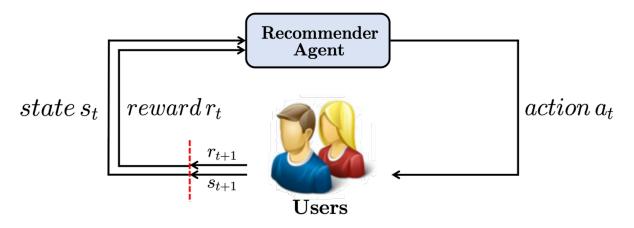
Data Science and Engineering Lab

Outline

- Recommendations in Single Scenario
 - DeepPage Deep Reinforcement Learning for Page-wise Recommendations (RecSys'2018)
 - DEERS Recommendations with Negative Feedback via Pairwise Deep Reinforcement Learning (KDD'2018)
 - DRN A Deep Reinforcement Learning Framework for News Recommendation (WWW'2018)
- Recommendations in Multiple Scenarios
 - DeepChain Whole-Chain Recommendations (CIKM'2020)
 - MA-RDPG Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning (WWW'2018)
 - RAM Jointly Learning to Recommend and Advertise (KDD'2020)
 - DEAR Deep Reinforcement Learning for Online Advertising in Recommender Systems (AAAI'2021)
- Online Environment Simulator
 - UserSim User Simulation via Supervised Generative Adversarial Network (WWW'2021)
- Surveys
 - Deep Reinforcement Learning for Search, Recommendation, and Online Advertising: A Survey (SIGWEB'2019)
 - Reinforcement Learning based Recommender Systems: A Survey (Arxiv'2021)

Conclusion

Continuously updating the recommendation strategies during the interactions



Maximizing the long-term reward from users

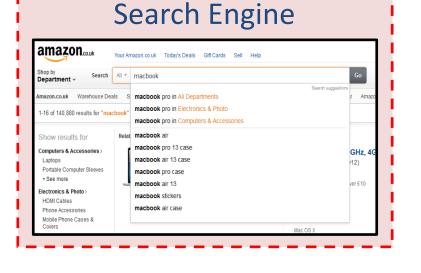
Future Directions

Incorporating more types of user-item interactions into recommendations

Considering continuous time information for recommendations

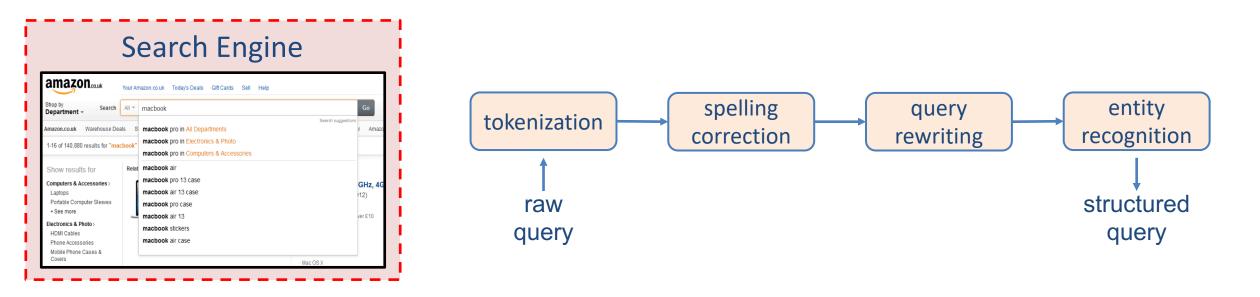
• Goal: finding and ranking a set of items based on a user query

Recommendations

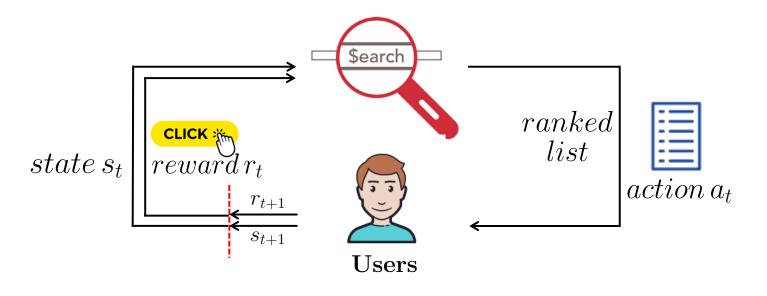


Advertisements

- Goal: finding and ranking a set of items based on a user query
 - Query understanding: jointly learning the tokenization, spelling correction, query rewriting and entity recognition, etc



- Goal: finding and ranking a set of items based on a user query
 - Query understanding: jointly learning the tokenization, spelling correction, query rewriting and entity recognition, etc
 - Ranking: directly optimizing user's feedback, such as user clicks & dwelling time



- Goal: finding and ranking a set of items based on a user query
 - Query understanding: jointly learning the tokenization, spelling correction, query rewriting and entity recognition, etc
 - Ranking: directly optimizing user's feedback, such as user clicks & stay time
 - Session search: user's behaviors of search results in the prior iteration will influence user's behaviors in the next search iteration

Search Engine amazon.co.uk Today's Deals Gitt Cards Sell Help					
Amazon.co.uk Warehouse De	als S	Search suggest macbook pro in All Departments	r Amazo		
1-16 of 140,880 results for "ma	cbook"	macbook pro in Electronics & Photo macbook pro in Computers & Accessories			
Show results for	Relat	macbook air			
Computers & Accessories > Laptops Portable Computer Sleeves		macbook pro 13 case macbook air 13 case macbook pro case	GHz, 4G (12)		
+ See more Electronics & Photo > HDMI Cables Phone Accessories	_	macbook air 13 macbook stickers macbook air case			

