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Recommender Systems

Recommender 
Systems 

Information
overload

Age of Information Explosion 

Recommend item X to user

Items can be: Products, News, Movies, Videos, 
Friends, etc. 
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Recommender Systems

A B C

Recommendation has been widely applied in online services:
- E-commerce, Content Sharing, Social Networking ... 

Product Recommendation
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Recommender Systems
Recommendation has been widely applied in online services:
- E-commerce, Content Sharing, Social Networking ... 

News/Video/Image Recommendation
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Recommender Systems
Recommendation has been widely applied in online services:
- E-commerce, Content Sharing, Social Networking ... 

Friend Recommendation



Problem Formulation

Historical user-item interactions or 
additional side information (e.g., 
social relations, item’s knowledge, etc.) 

INPUT
Predict how likely a user would 
interact with a target Item (e.g., click, 
view, or purchase)

OUTPUT
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Item set

User set social relations, age, 
gender, occupation, etc.

year, genre, actor,
reviews, etc.

Side information

Side information
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Recommender Systems

• Collaborative Filtering (CF) is the most well-known technique for recommendation.
- Similar users (with respect to their historical interactions) have similar preferences.
- Modelling users’ preference on items based on their past interactions (e.g., ratings and clicks).

• Learning representations of users and items is the key of CF.
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Task: predicting missing movie ratings in Netflix.
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User-item Rating Matrix𝐑
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Matrix Factorization

≈
𝒒!𝒑"#

𝑑

𝑑 Predicted rating of item 𝒋 for user 𝒊 : 

�̂�"! ≈ 𝒑"#𝒒! = *
$%&

'

𝑝"$ 𝑞!$

User representations 
𝐏 ∈ ℝ!×#

Items representations
QT ∈ ℝ#×$

𝐑 ≈ 𝐏 × 𝐐T

× ≪ 𝒎𝒊𝒏(𝒏,𝒎)

User-item Rating Matrix𝐑
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Ø Learn representations to describe users and items based on user-item rating matrix 𝐑.
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Objective with rating reconstruction error:

𝑚𝑖𝑛 𝐏, 𝐐 *
",!∈.

(𝑟"! − �̂�"!)/ = *
",!∈.

(𝑟"! − 𝒑"#𝒒!)/

Given 𝑛×𝑚 matrix 𝐑,  the goal is to learn: 
Users/Items representations: 𝐏 ∈ ℝ0×', 𝐐 ∈ ℝ2×'

Observed user-item interactions (known): 𝑺

observed rating score
predicted rating score

≈
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𝒅
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User representations 
𝐏 ∈ ℝ!×#

Item representations
QT ∈ ℝ#×$

×

≪ 𝒎𝒊𝒏(𝒏,𝒎)

User-item Rating Matrix𝐑
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Task: rating prediction in Netflix
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Matrix Factorization
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Deep Learning is Changing Our Lives
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Reinforcement Learning 
(RL)

Graph Neural Networks 
(GNNs)

Automated Machine Learning
(AutoML) 

Deep Recommender Systems

Fundamentals of Deep Recommender Systems
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Manually Deisgned Architectures
§ Expert knowledge
§ Time and engineering efforts

Graph-structured Data
§ Information Isolated Island

Issue: ignore implicit/explicit 
relationships among instances

ItemsUsers
!! "!
!! ""
!! "#
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… …

Recommendation Policies
§ Offline optimization
§ Short-term reward
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Agenda

• 9:00  – 9:10  Introduction to Recommender Systems  (Jiliang Tang)
• 9:10  – 9: 35 Fundamentals of Deep Recommender Systems (Wenqi Fan)
• 9: 35 – 10:15 Reinforcement Learning for Recommendations (Xiangyu Zhao)
• 10:15 – 10:25  Coffee Break (10 mins)
• 10:25 – 11:00  Graph Neural Network for Recommendations (Wenqi Fan)
• 11:05 – 11:35 AutoML for recommendations (Xiangyu Zhao)
• 11:35 – 11:45  Conclusion and QA session


