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) A General Paradigm
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} Data as Graphs

Most of the data in RS has essentially a graph structure
- E-commerce, Content Sharing, Social Networking ...

The world is more closely connected than you might think!
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} Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using
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} Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using
neural networks to aggregate information from
local neighborhoods.

1. Model a local structural information
(neighborhood) of a node;
2. Aggregation operation;
3. Representation update.

GNNs can naturally integrate node feature and
the topological structure for graph-structured
data.

Inductive Representation Learning on Large Graphs, NeulPS, 2017.
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} Graph Neural Networks (GNNs)

Basic approach: Average neighbor messages and apply a neural network.

hO — Initial 0-th layer embeddings are equal to node v’s features
=X
1% 1%
hk—l
u —_
hy =0 | WS + Wxhj™!

k-th layer embedding of node v

Zv.i hlﬁ

Embedding after k layers of neighborhood aggregation.
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Semi-supervised Classification with Graph Convolutional Network, ICLR, 2017.



} Graph Neural Networks (GNNs)

Basic approach: Average neighbor messages and apply a neural network.

hO _ 5 — Initial 0-th layer embeddings are equal to node v’s features
v v

Non-linearity (e.g., ReLU or tanh)
\ trainable matrices (i.e., what we learn)

m 4k/l'l‘lli_l\Ak -
h; =0 | W} + W5 h;;

\ UEN (V) IN(u)|
k-th layer embedding of node v \

Average of neighbor’s previous layer embeddings

Previous layer embedding of node v

Zv.i hX

Embedding after k layers of neighborhood aggregation.
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} Graph Neural Network (GNN)

» Simple neighborhood aggregation:
hk—l
hf = o | WY —— + W5hj?
UEN (V) IN (u)]

» GraphSAGE:

> GAT:

Inductive Representation Learning on Large Graphs, NeulPS, 2017.
Graph Attention Networks, ICLR, 2018
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} Graph Neural Network (GNN)

» Simple neighborhood aggregation:
hk—l
hf = o | WY —— + W5hj?
UEN (V) IN (u)]

» GraphSAGE:
h% = o ([WF - AGG ({h¥~%, v,€ N(w)}), W5 - h¥])

Generalized Aggregation: mean, pooling, LSTM
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} Graph Neural Network (GNN)

» Simple neighborhood aggregation:
hk—l
hf = o | WY —— + W5hj?
UEN (V) IN (u)]

» GraphSAGE:
h% = o ([WF - AGG ({h¥~%, v,€ N(w)}), W5 - h¥])

Generalized Aggregation: mean, pooling, LSTM

h =0 ( Z Qyy WE h5_1>
UEN (V) \

Learned attention weights

> GAT:

Inductive Representation Learning on Large Graphs, NeulPS, 2017.
Graph Attention Networks, ICLR, 2018
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Book: Deep Learning on Graphs

https://cse.msu.edu/~mayao4/dlg book/

Yao Ma and Jiliang Tang, MSU

1. Introduction

v

Part One: Foundations
I 2. Foundations of Graphs I

I 3. Foundations of Deep Learning |

v

Part Two: Methods

l 4. Graph Embedding I

5. Graph Neural Networks
I 6. Robust Graph Neural Networks I

I 7. Scalable Graph Neural Networks I

l 8. Graph Neural Networks for Complex Graphs I
I 9. Beyond GNNs: More Deep Models for Graphs I

v

Part Three: Applications

| 10. Graph Neural Networks in Natural Language Processing I
I 11. Graph Neural Networks in Computer Vision I

l 12. Graph Neural Networks in Data Mining I
I 13. Graph Neural Networks in Bio-Chemistry and Healthcare I

v

Part Four: Advances
I 14. Advanced Methods in Graph Neural Networks I

I 15. Advanced Applications in Graph Neural Networks
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} GNNs based Recommendation

B Collaborative Filtering

e Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD’18)

e Graph Convolutional Matrix Completion (KDD’18 Deep Learning Day )

* Neural Graph Collaborative Filtering (SIGIR’19)

e LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR’20)

m Collaborative Filtering with Side Information (Users/Items)

0 Social Recommendation (Users)
e Graph Neural Network for Social Recommendation (WWW’19)
* A Neural Influence Diffusion Model for Social Recommendation (SIGIR’19)
* A Graph Neural Network Framework for Social Recommendations (TKDE’20)
O Knowledge-graph-aware Recommendation (ltems)
* Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness
Regularization (KDD’19 and WWW’19)
* KGAT: Knowledge Graph Attention Network for Recommendation (KDD’19)
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l Interactions as Bipartite Graph
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l Interactions as Bipartite Graph
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f GCMC

User representation learning
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f GCMC

User representation learning

i [ ey users item
Aggregate for each rating: ;. = Z —IWTJ:!Uj items
jeNi,r ijh--- 5
u; = W - o(accum(u; 1,...,Ui R)) e ;

ltem representation learning in a similar way

s

Bipartite Graph

Graph Convolutional Matrix Completion. 2017. 26
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Embedding Propagation, inspired by GNNs
* Propagate embeddings recursively on the user-item graph
e Construct information flows in the embedding space
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l LightGCN

Simplifying GCN for recommendation

Prediction

£ Layer Combination (weighted sum)

............................

Normalized Sum :

-1 -0 (-1 | (1-1) -1
€, e;, is €y, €y, :
............ neighbors of u, . Deighborsofi,

Light Graph Convolution (LGC)
discard feature transformation and nonlinear activation

LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020. 30



LightGCN

Simplifying GCN for recommendation

Prediction

£ Layer Combination (weighted sum)
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Light Graph Convolution (LGC)

discard feature transformation and nonlinear activation

LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020. 31



} GNN based Recommendation

B Collaborative Filtering

Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD’18)

Graph Convolutional Matrix Completion (KDD’18 Deep Learning Day )

Neural Graph Collaborative Filtering (SIGIR’19)

LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR’20)

M Collaborative Filtering with Side Information (Users/Items)

O Social Recommendation (Users)

e Graph Neural Network for Social Recommendation (WWW’19)
* A Neural Influence Diffusion Model for Social Recommendation (SIGIR’19)
* A Graph Neural Network Framework for Social Recommendations (TKDE’20)

O Knowledge-graph-aware Recommendation (Iltems)

 Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness
Regularization (KDD’19 and WWW’19)
* KGAT: Knowledge Graph Attention Network for Recommendation (KDD’19)
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Social Recommendation

Side information about users: social networks

O Users’ preferences are similar to or influenced by the people around them (nearer neighbours)
[Tang et. al, 2013]
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Social Recommendation

Side information about users: social networks

O Users’ preferences are similar to or influenced by the people around them (nearer neighbours)
[Tang et. al, 2013]
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) GraphRec

Graph Data in Social Recommendation

User-Item Graph Social Graph

Graph Neural Networks for Social Recommendation. WWW 2019. 35



) GraphRec

Graph Data in Social Recommendation

/f Social Graph
\‘ x |

User-Item -
Graph

User-Item Graph Social Graph

Graph Neural Networks for Social Recommendation. WWW 2019.
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GraphRec

Three Components:

o User Modeling [Rating Prediction |

(r

o ltem Modeling $

o Rating Prediction ?

| Item Modeling

User Modeling |
Eser Latent Factﬂi

Concatenation

Item-space

2 2
Item-space ' b Item-space ' eoe

ggggggggg

FES

Item Aggregation

Social Aggregation

Item Latent Factor

User Aggregation

Item-space: Item-space User Latent Factor
Social-space: Social-space User Latent Factor

Graph Neural Networks for Social Recommendation. WWW 2019.

ﬁ Item Embedding

- User Embedding
- Opinion Embedding
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) GraphRec

Three Components:
o User Modeling [ Rating Prediction |
o Item Modeling $
o Rating Prediction

[ User Modeling | Item Modeling
Eser Latent Facgri

i
! 4 2 User Aggregation
o 414 . 3 ‘ : / ‘ Item-space: Item-space User Latent Factor

Social-space: Social-space User Latent Factor

i/” .
- n}/ 'EE E (57 tem Embedding
NNNNNN : - User Embedding
Item Aggregation —  Social Aggregation @ ovinion Embecding

(User-ltem Graph) (Social Graph)

Graph Neural Networks for Social Recommendation. WWW 2019. 38



I GraphRec: User Modeling

1 Social Aggregation in user-user social graph -t

Weak tie Strong tie
1 Users are likely to share more similar tastes with strong f R
ties than weak ties.

Graph Neural Networks for Social Recommendation. WWW 2019. 39



I GraphRec: User Modeling

1 Social Aggregation in user-user social graph -t

Weak tie Strong tie
1 Users are likely to share more similar tastes with strong ﬁ k
ties than weak ties.

g ’ ‘ ‘
@ Attention network to differentiate the importance weight. ’ ’

Aggregating item-space users messages from
social neighbors

pa

| Social-space '

» +b) (

I )
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attentive weight

Graph Neural Networks for Social Recommendation. WWW 2019. 40



} User Modeling: Social Aggregation
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} User Modeling: Social Aggregation
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} GNNs based Recommendation

B Collaborative Filtering

Graph Convolutional Neural Networks for Web-Scale Recommender Systems (KDD’18)

Graph Convolutional Matrix Completion (KDD’18 Deep Learning Day )

Neural Graph Collaborative Filtering (SIGIR’19)

LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation (SIGIR’20)

B Collaborative Filtering with Side Information (Users/Items)

O Social Recommendation (Users)

* Graph Neural Network for Social Recommendation (WWW’19)
* A Neural Influence Diffusion Model for Social Recommendation (SIGIR’19)
* A Graph Neural Network Framework for Social Recommendations (TKDE’20)

O Knowledge-graph-aware Recommendation (Items)

* Knowledge Graph Convolutional Networks for Recommender Systems with Label Smoothness
Regularization (KDD’19 and WWW’19)
* KGAT: Knowledge Graph Attention Network for Recommendation (KDD’19)
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} KGCN (WWW’19)

Side information about items: Knowledge Graph (KG)

Heterogeneous Graph:
» Nodes: entities (Items)
» Edges: relations

Triples: (head, relation, tail)

_________________________________

1
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- 1
1
Cast Away PR ! Interstellar
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]
I
]
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|
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H H I
. starred collaborate :
Back to I direct , Forrest Gump
the Future |
directed :
: — direct —
o Robert '
The Green Mile ! Zormickis SS,tel‘ée" | Raiders of
' pieiberg ) the Lost Ark
Movies the user K R Movies the user
have watched HeMisads SiHp

may also like

45

Knowledge Graph Convolutional Networks for Recommender Systems, WWW 2019.



} KGCN (WWW’19)

Side information about items: Knowledge Graph (KG)

Heterogeneous Graph:
» Nodes: entities (Items)
» Edges: relations

Triples: (head, relation, tail)

film.film.director
forkestGUMp » Robert Zemeckis

(items) P
A
S o /
N e
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" ~ |
H </~Q B PR
H " 1
Cast Away | i Interstellar
I
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| :
o r N
o g: | starred ~
H_H starre
Back to | | [Forrest Gump
the Future | N
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: \ / 1
; — direct —
e Robert :
The Green Mile ! Zormickis SS,tel‘ée" | Raiders of
' PIRINETS ) the Lost Ark
Movies the user % e Movies the user
have watched nowileage Grap

may also like

46

Knowledge Graph Convolutional Networks for Recommender Systems, WWW 2019.



} KGCN (WWW’19)

Side information about items: Knowledge Graph (KG)

Heterogeneous Graph:
» Nodes: entities (Items) Z\ _ u
> Edges: relations yU’U — u? \4

Triples: (head, relation, tail)

Forrest Gump film.film.director

. > Robert Zemeckis GNNs?
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LS
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N e
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§ KGCN (WWW’19)

* Representation Aggregation of neighboring entities

item e“[H] l u user
(v*) .
y

predicted probability

Transform a heterogeneous KG into a
user-personalized weighted graph

Knowledge Graph Convolutional Networks for Recommender Systems. WWW 2019. 48



§ KGCN (WWW’19)

* Representation Aggregation of neighboring entities

u _ user-specific relation
Ty = g(ll, I') (e.g., innerproduct) Tt oT T !

u
» exp (nrv, . )

in =
e YeeN(v) &P (TE )
Normalized

e o o o o e e o o e e o = = —— e o = o e e = e e =

—
item e“[H] l u user
(v*) .
y

predicted probability

Transform a heterogeneous KG into a
user-personalized weighted graph

Knowledge Graph Convolutional Networks for Recommender Systems. WWW 2019. 49



§ KGCN (WWW’19)

* Representation Aggregation of neighboring entities

u _ user-specific relation
Ty = g(ll, I') (e.g., innerproduct) Tt oT T !

u
» exp (nrv, . )

in =
e YeeN(v) &P (TE )
Normalized

e o o o o e e o o e e o = = —— e o = o e e = e e =

szk{(v) _ Z ]'i—"l:lv,eel ------
eeN(v) Ne“[H] l u user

vY v
A v y
yuv — f(ll, Vu) predicted probability

Transform a heterogeneous KG into a
user-personalized weighted graph

Knowledge Graph Convolutional Networks for Recommender Systems. WWW 2019. 50
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