

Automated Machine Learning for Recommender Systems

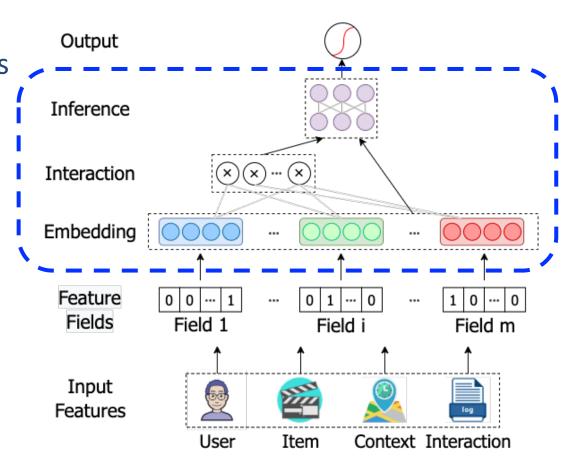
Xiangyu Zhao

Data Science and Engineering Lab Michigan State University

www.cse.msu.edu/~zhaoxi35 , zhaoxi35@msu.edu

Deep Recommender Architectures

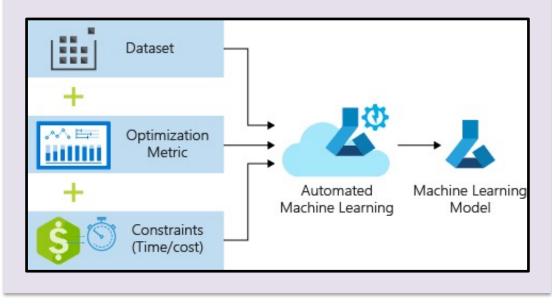
- Advantages
 - Feature representations of users and items
 - Non-linear relationships between users and items
- Typical architecture
 - **Embedding layer**
 - Interaction layer
 - Inference layer
- Manually designed architecture
 - Expert knowledge
 - Time and engineering efforts
 - Human error and bias \rightarrow suboptimal architecture



AutoML for Deep Recommender Systems

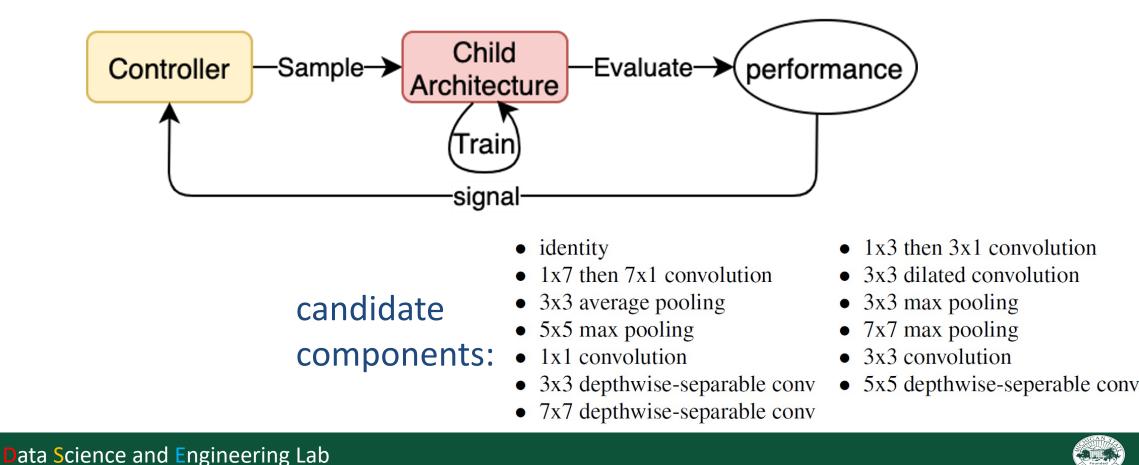
- Deep architectures are designed by the machine automatically
- Advantages
 - Less expert knowledge
 - Saving time and efforts
 - Different data → different architectures

Automated Machine Learning



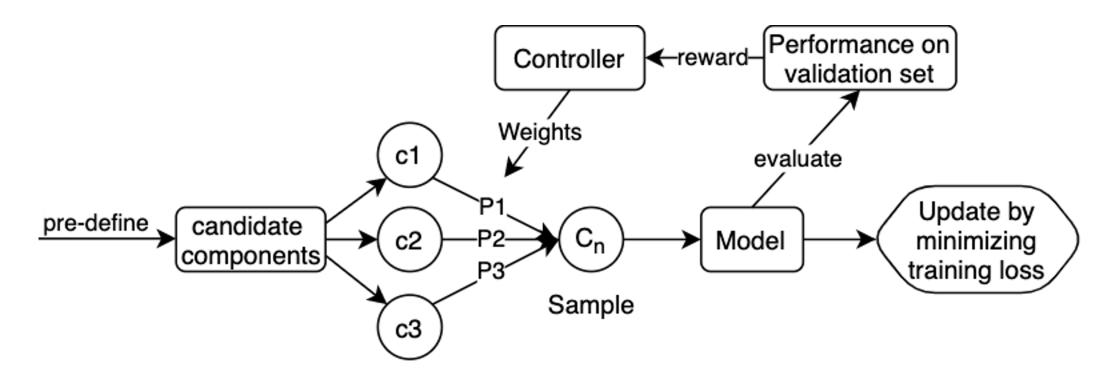
Neural Architecture Search

- **Reinforcement Learning-based NAS**
 - Controller: learning to select optimal child architecture
 - Child architecture: the DNN with a specific architecture



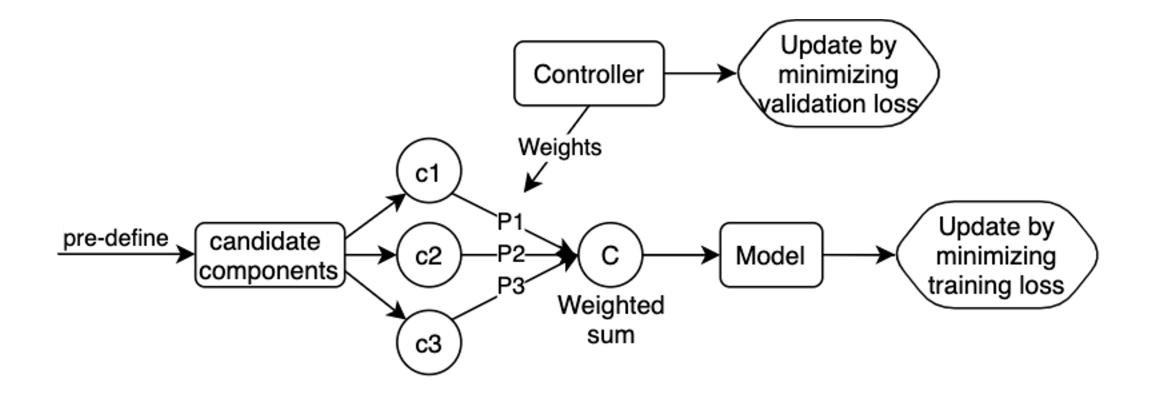
Neural Architecture Search

- Reinforcement Learning-based NAS
 - Hard selection on candidate components
 - The model's performance on validation set are viewed as reward
 - The weights of controller are updated to maximize the reward

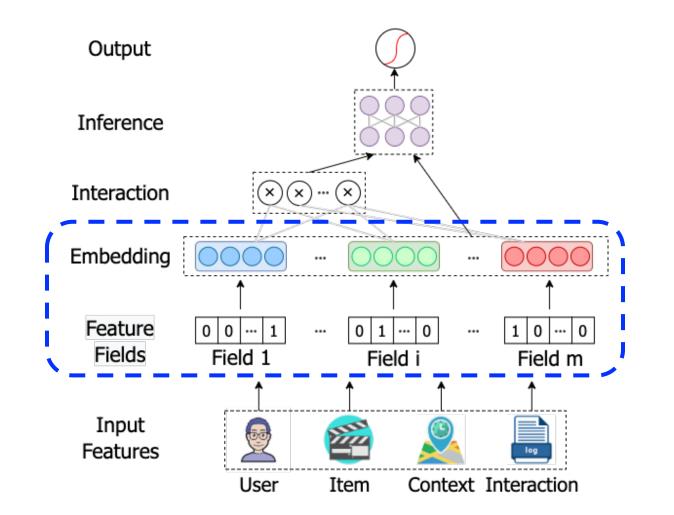


Neural Architecture Search

- Gradient Descent-based NAS
 - Soft selection on candidate components, weighted sum them
 - Directly update the controller weights by minimizing the loss on validation set

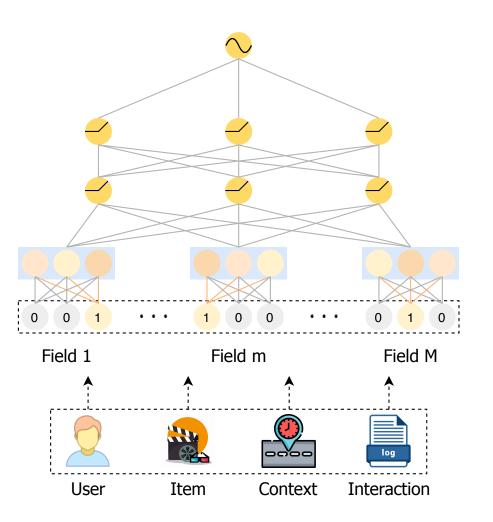


AutoML in Embedding Layer



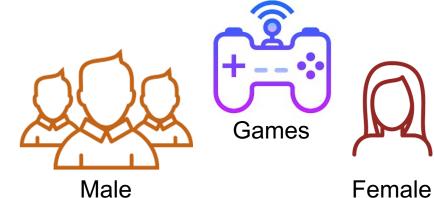
Embedding Components

- Real-world recommender systems involve numerous feature fields
 - Users
 - e.g., gender and age
 - Items
 - e.g., category and price
 - Contextual information
 - e.g., time and location
 - Their interactions
 - e.g., *users*' purchased *items* at *location* A
- Features → Embeddings
 - Unified dimension for all features



Unified Embedding Dimension

- Memory inefficiency problem
 - Embedding dimension → Capacity to encode information
 - Different feature fields have different cardinality
 - Different features have different frequency



Users Check-ins Venues Categories Category Hierarchy

Target	Weekday	Gender	User_ID
1	Tuesday	Male	0000001
0	Monday	Female	3495682
1	Thursday	Female	5676562
0	Friday	Male	9231237
	7	2	million

Outline

AutoML in Embedding Layer

- NIS Neural Input Search for Large Scale Recommendation Models (KDD'2020)
- **ESAPN** Automated Embedding Size Search in Deep Recommender Systems (SIGIR'2020)
- AutoDim Field-aware Embedding Dimension Search in Recommender Systems (WWW'2021)
- AutoDis Automatic Discretization for Embedding Numerical Features in CTR Prediction (AAAI'2021)

AutoML in Interaction Layer

- AutoFIS Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction (KDD'2020)
- AutoGroup Automatic Feature Grouping for Modelling Explicit High-Order Feature Interactions in CTR Prediction (SIGIR'2020)
- AutoCTR Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction (KDD'2020)

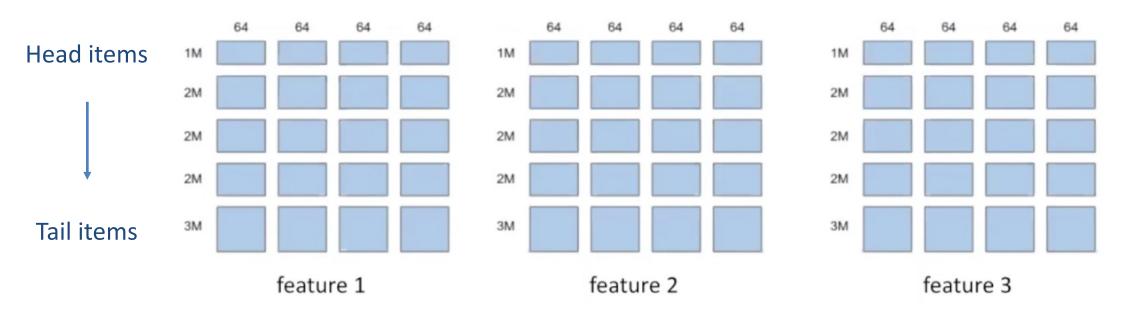
NIS - Motivation

- Head items
 - More data, more information
 - Needing larger embedding size
- Tail items
 - Less data, less information
 - Small embedding size is enough

	0.1M x 512
0.3M x 256	
0.4M x 128	
1.2M x 64	

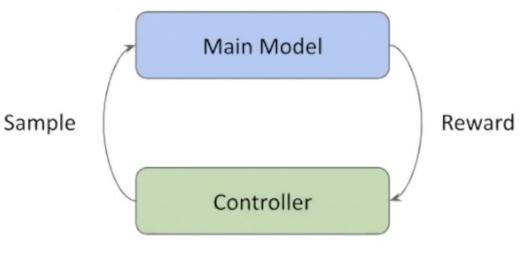
NIS - Search Space

- Assume 3 features, each with largest allowed embedding matrix of size 10M x 256
 - Items should be sorted by their frequency
 - Cutting the embedding matrix into smaller pieces
 - The way to cut the embedding matrix is pre-defined



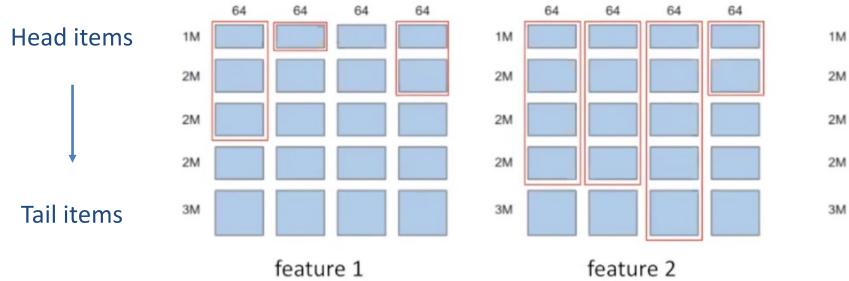
NIS - Multisize Embedding

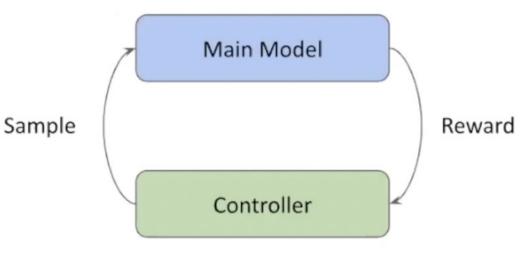
- RL-based AutoML approach
 - Main model is the deep recommendation model
 - Controller learns to sample embedding dimensions that generate higher reward

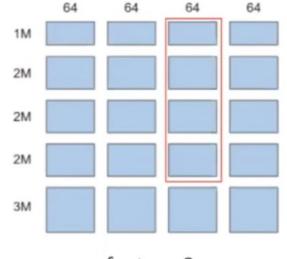


NIS - Multisize Embedding

- RL-based AutoML approach
 - Main model is the deep recommendation model
 - Controller learns to sample embedding dimensions that generate higher reward
 - E.g. feature 1: 1M x 192 + 2M x 128 + 2M x 64
 - **Reward:** $R = R_Q \lambda * C_M$







Outline

AutoML in Embedding Layer

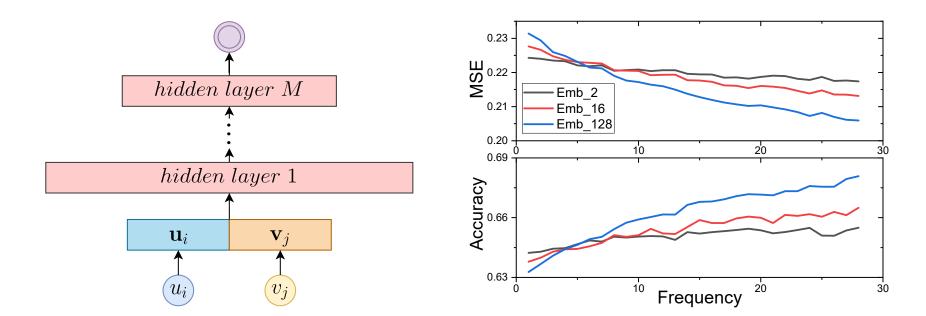
- NIS Neural Input Search for Large Scale Recommendation Models (KDD'2020)
- **ESAPN** Automated Embedding Size Search in Deep Recommender Systems (SIGIR'2020)
- AutoDim Field-aware Embedding Dimension Search in Recommender Systems (WWW'2021)
- AutoDis Automatic Discretization for Embedding Numerical Features in CTR Prediction (AAAI'2021)

AutoML in Interaction Layer

- AutoFIS Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction (KDD'2020)
- AutoGroup Automatic Feature Grouping for Modelling Explicit High-Order Feature Interactions in CTR Prediction (SIGIR'2020)
- AutoCTR Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction (KDD'2020)

Motivations

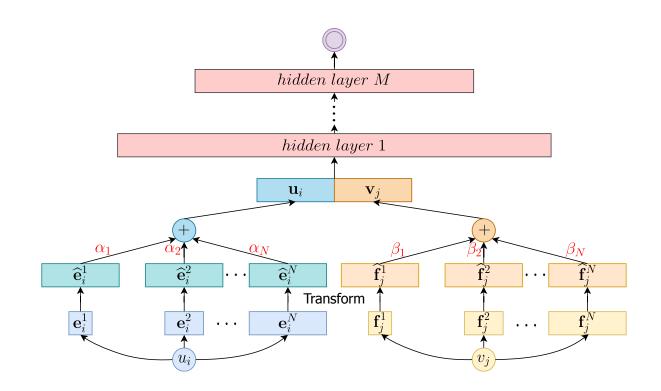
- Preliminary Experiment
 - Frequency: # interactions a user/item



Embedding dimension often determines the capacity to encode information

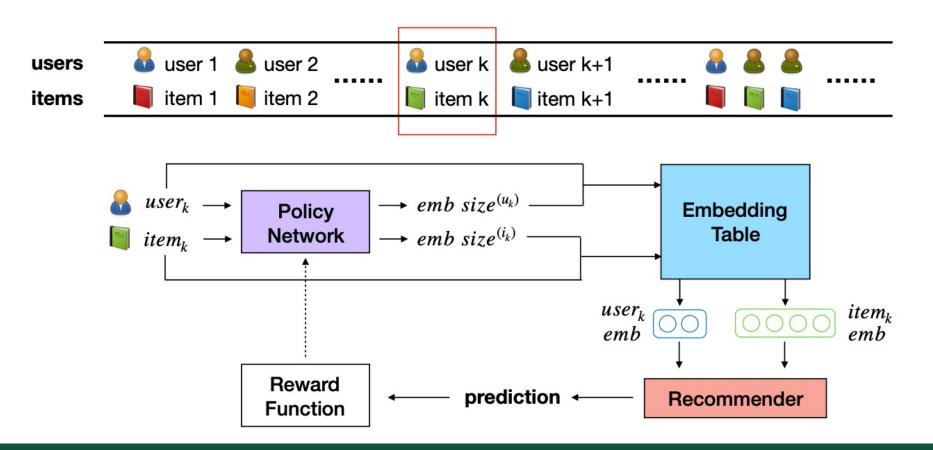
Motivations

- Dynamically search the embedding sizes for different users and items
 - Optimal recommendation quality all the time
 - More efficient in memory

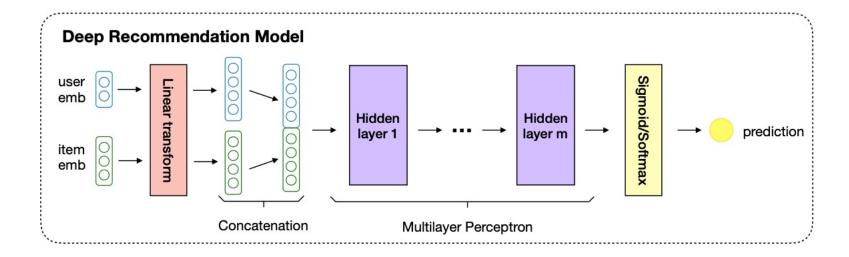


Overview

- Two Components
 - Deep recommendation model
 - Embedding Size Adjustment Policy Network (ESAPN): hard selection via RL



Deep Recommendation Model



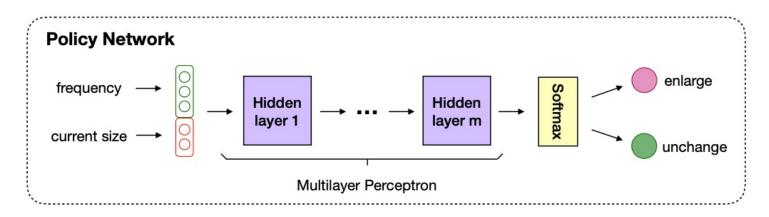
Candidate embedding sizes

$$D = \{d_1, d_2, \dots, d_n\} \qquad d_1 < d_2 < \dots < d_n$$

Linear transformations

$$\mathbf{e_2} = W_{1 \to 2} \mathbf{e_1} + b_{1 \to 2}$$
$$\mathbf{e_3} = W_{2 \to 3} \mathbf{e_2} + b_{2 \to 3}$$
$$\dots$$

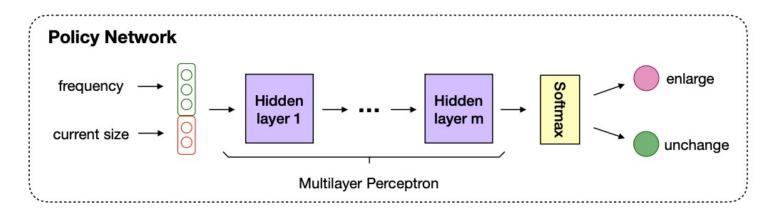
$$\mathbf{e_n} = W_{n-1 \to n} \mathbf{e_{n-1}} + b_{n-1 \to n}$$



Environment

- The deep recommendation model
- State
 - *s* = (*f*, *e*)
 - *f:* frequency *e:* current embedding size

Policy Network

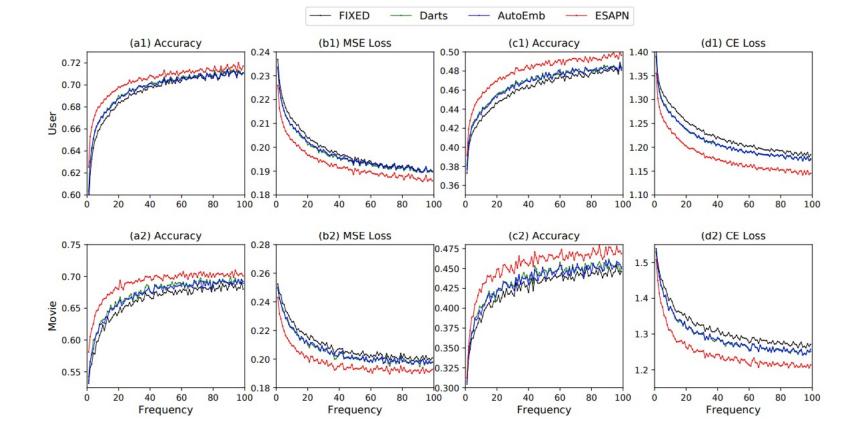


- Action
 - Enlarge or Unchange
- Reward $L^{(u)} = (L_1^{(u)}, \dots, L_T^{(u)})$ $R^{(u)} = \frac{1}{T} \sum_{t=1}^T L_t^{(u)} L$

$$L^{(i)} = (L_1^{(i)}, \dots, L_T^{(i)})$$

$$R^{(i)} = \frac{1}{T} \sum_{t=1}^{T} L_t^{(i)} - L$$

Performance with Frequency



Founded

Data Science and Engineering Lab

Outline

AutoML in Embedding Layer

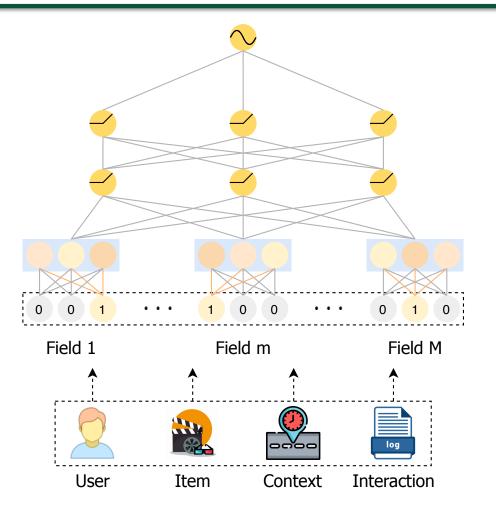
- NIS Neural Input Search for Large Scale Recommendation Models (KDD'2020)
- **ESAPN** Automated Embedding Size Search in Deep Recommender Systems (SIGIR'2020)
- AutoDim Field-aware Embedding Dimension Search in Recommender Systems (WWW'2021)
- AutoDis Automatic Discretization for Embedding Numerical Features in CTR Prediction (AAAI'2021)

AutoML in Interaction Layer

- AutoFIS Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction (KDD'2020)
- AutoGroup Automatic Feature Grouping for Modelling Explicit High-Order Feature Interactions in CTR Prediction (SIGIR'2020)
- AutoCTR Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction (KDD'2020)

AutoDim - Motivation

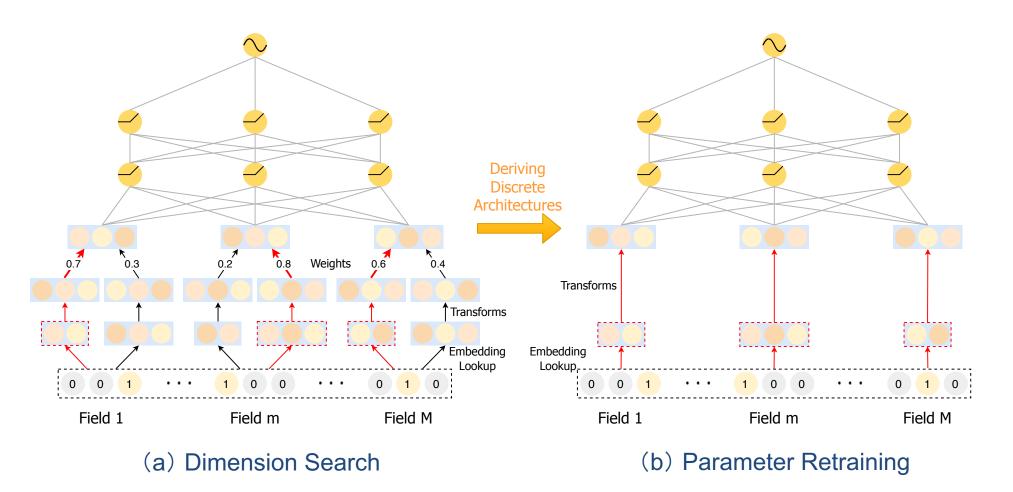
- Complex relationship
 - Embedding dimensions
 - Feature distributions
 - Neural network architectures
- Large search space
 - M feature field (M > 100)
 - K candidate dimensions
 - K^M selecion space



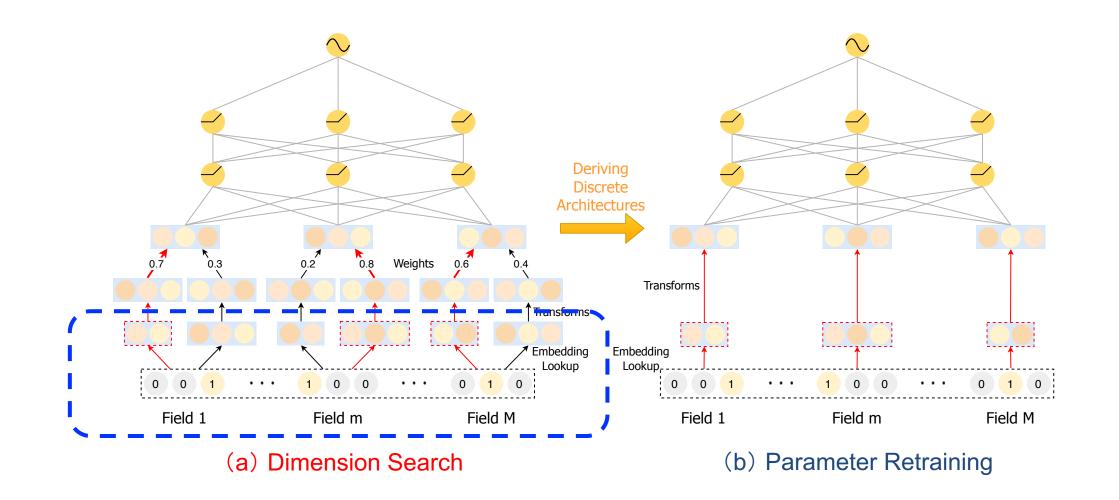
Goal: Selecting embedding dimensions to different feature fields automatically

AutoDim - Overview

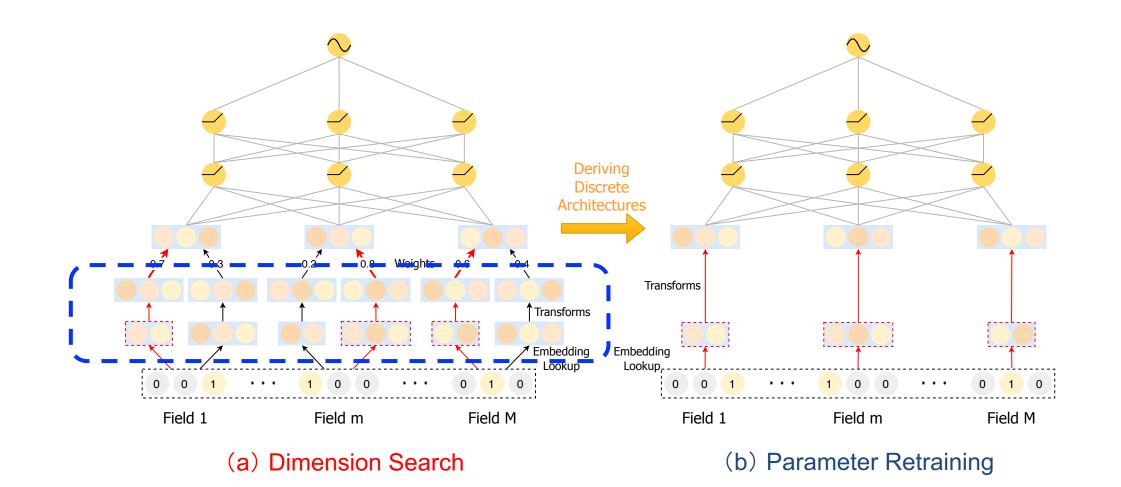
Two-stage framework



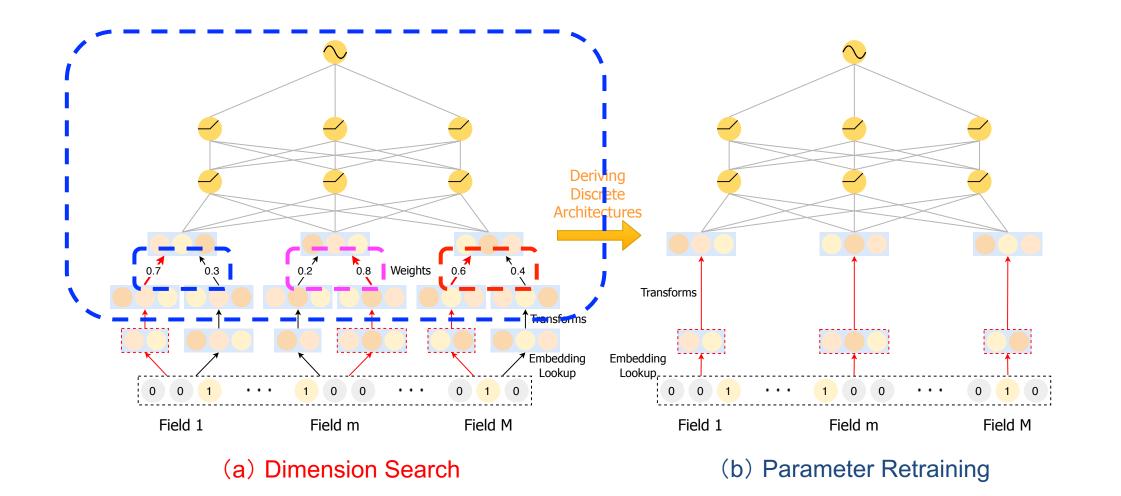
AutoDim - Dimension Search Stage



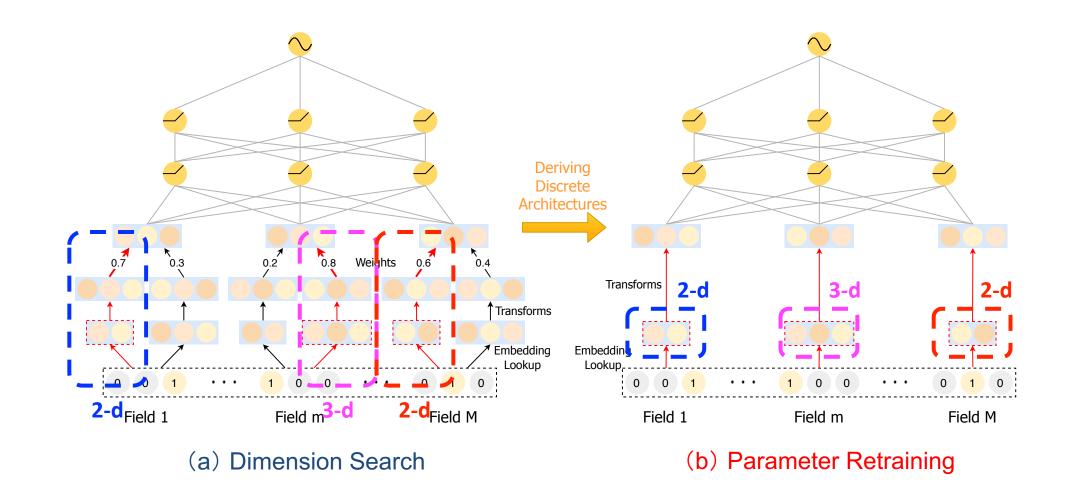
AutoDim - Dimension Search Stage



Data Science and Engineering Lab



AutoDim - Parameter Retraining Stage



Dataset Model	Model	Metrics	Search Methods								
			FDE	MDE	DPQ	NIS	MGQE	AEmb	RaS	AD-s	AutoDim
Criteo	FM	AUC Logloss EP (M)	0.8020 0.4487 34.778	0.8027 0.4481 15.520	0.8035 0.4472 20.078	0.8042 0.4467 13.636	0.8046 0.4462 12.564	0.8049 0.4460 13.399	0.8056 0.4457 16.236	0.8063 0.4452 31.039	0.8078* 0.4438* 11.632*
Criteo	W&D	AUC Logloss EP (M)	0.8045 0.4468 34.778	0.8051 0.4464 18.562	0.8058 0.4457 22.628	0.8067 0.4452 14.728	0.8070 0.4446 15.741	0.8072 0.4445 15.987	0.8076 0.4443 18.233	0.8081 0.4439 30.330	0.8098* 0.4419* 12.455*
Criteo	DeepFM	AUC Logloss EP (M)	0.8056 0.4457 34.778	0.8060 0.4456 17.272	0.8067 0.4449 25.737	0.8076 0.4442 12.955	0.8080 0.4439 13.059	0.8082 0.4438 13.437	0.8085 0.4436 17.816	0.8089 0.4432 31.770	0.8101* 0.4416* 11.457*

"*" indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best baseline. (M=Million)

- Metrics: AUC \uparrow , Logloss \downarrow , EP \downarrow (embedding parameters)
- AutoDim is general for any deep recommender systems with embedding layer
- Small serach space: 5 candiate for each feature field
- AutoDim → Best AUC and Logloss, and saving 70~80% embedding parameters

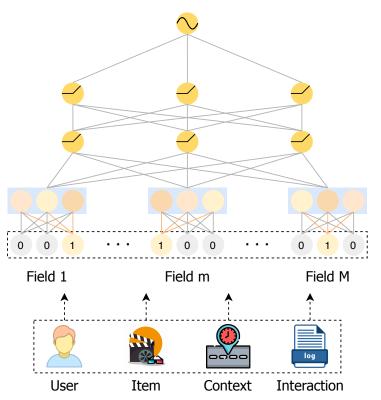
Outline

AutoML in Embedding Layer

- NIS Neural Input Search for Large Scale Recommendation Models (KDD'2020)
- **ESAPN** Automated Embedding Size Search in Deep Recommender Systems (SIGIR'2020)
- AutoDim Field-aware Embedding Dimension Search in Recommender Systems (WWW'2021)
- AutoDis Automatic Discretization for Embedding Numerical Features in CTR Prediction (AAAI'2021)
- AutoML in Interaction Layer
 - AutoFIS Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction (KDD'2020)
 - AutoGroup Automatic Feature Grouping for Modelling Explicit High-Order Feature Interactions in CTR Prediction (SIGIR'2020)
 - AutoCTR Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction (KDD'2020)

AutoDis

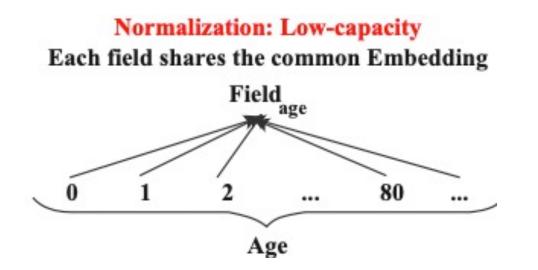
- Real-world recommender systems involve numerous feature fields
 - Users
 - e.g., gender and age
 - Items
 - e.g., category and price
 - Contextual information
 - e.g., time and location
 - Their interactions
 - e.g., *users*' purchased *items* at *location* A



- E.g., Gender=Male, Day=Tuesday, Height=175.6, Age=18
 - Categorical field Gender v.s. Numerical field Height

Existing Methods for Numerical features

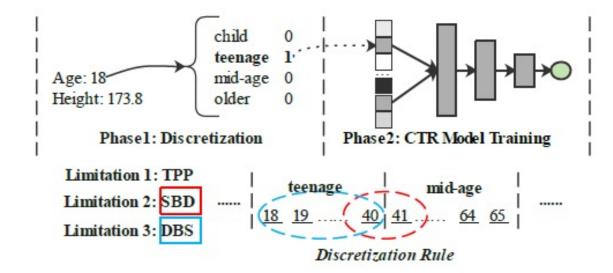
- Normalization
 - All the numerical features in the same field share a single embedding and scalar multiply with their values



- Disadvantage
 - Assuming embeddings of different features in the same field are linearly related to each other

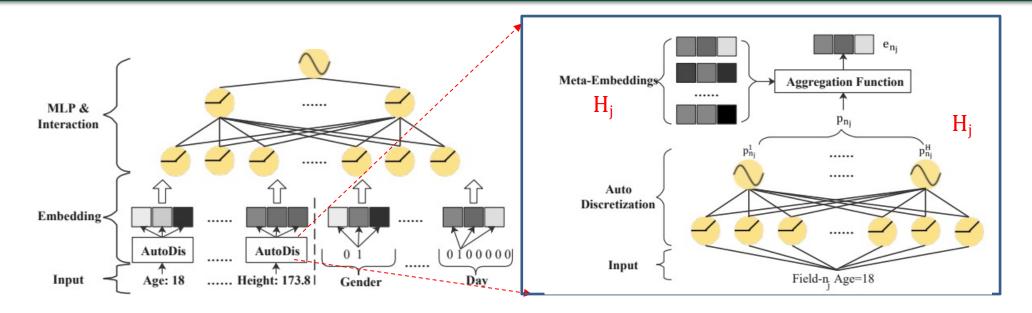
Existing Methods for Numerical features

- Discretization
 - E.g., partitioning the range of the feature values into k buckets



- Disadvantages
 - TPP: cannot be optimized together with main model
 - SBD: different embeddings for similar numerical value 40 and 41
 - DBS: same embeddings for very different numerical value 18 and 40

Aggregation Function



Automatic Discretization
Continuous value mapping :

$$\widehat{x}_{n_j}^h = \mathbf{w}_{n_j}^h \cdot x_{n_j}$$

Softmax :
 $p_{n_j}^h = \frac{e^{\frac{1}{\tau}\widehat{x}_{n_j}^h}}{\sum_{l=1}^{H_j} e^{\frac{1}{\tau}\widehat{x}_{n_j}^l}},$
Soft discretization output:
 $g(x_{n_j}) = [p_{n_j}^1, ..., p_{n_j}^h, ..., p_{n_j}^{H_j}].$

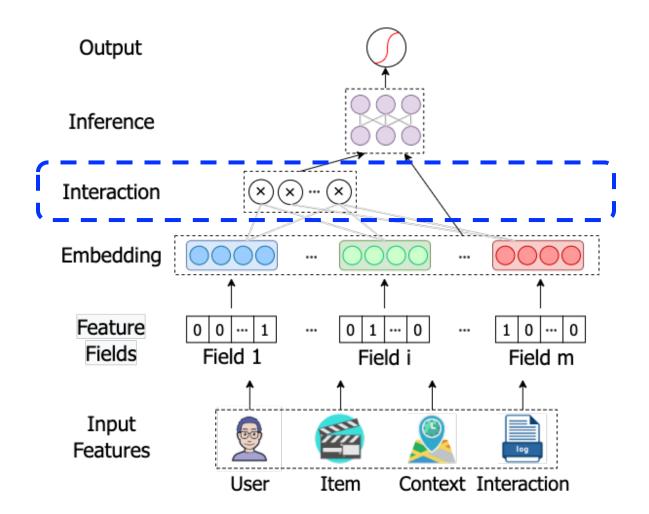
Aggregation FunctionMax-Pooling:
$$\mathbf{e}_{n_j} = \mathbf{ME}_{n_j}^k$$
, where $k = \arg \max_{h \in \{1, 2, \dots, H_j\}} p_{n_j}^h$,Top-K-Sum: $\mathbf{e}_{n_j} = \sum_{l=1}^{K} \mathbf{ME}_{n_j}^{k_l}$, where $k_l = \arg top_{h \in \{1, 2, \dots, H\}} p_{n_j}^h$,Weighted-Average: $\mathbf{e}_{n_j} = \sum_{l=1}^{H_j} p_{n_j}^l \cdot \mathbf{ME}_{n_j}^l$.

Data Science and Engineering Lab

Advantages

- End-To-End:
 - The discretization of numerical features can be optimized jointly with the main model
- Continuous-But-Different
 - Different feature values are assigned with different embeddings
 - Closer the feature values have more similar the embeddings

AutoML in Interaction Layer



Background

Multi-field data

Target	Weekday	Gender	City	Product Category
1	Tuesday	Male	London	Sports
0	Monday	Female	New York	Cosmetics
1	Thursday	Female	Beijing	Clothing
0	Friday	Male	Tokyo	Food

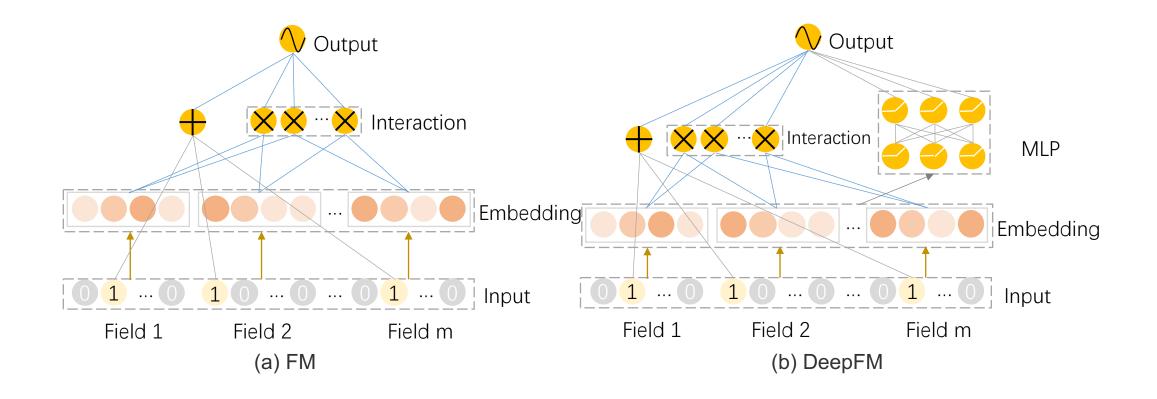
High dimensional and sparse

Effectively Modelling Feature Interactions Is Important

- User behavior is complicated to model
- Both low-order and high-order feature interactions play important roles to model user behavior.
 - People like to download popular apps \rightarrow id of an app may be a signal
 - People often download apps for food delivery at meal time → interaction between app category and time-stamp may be a signal
 - Male teenagers like shooting game or RPG → interaction of app category, user gender and age may be a signal
- Most feature interactions are hidden in data and difficult to identify (e.g., "diaper and beer" rule)

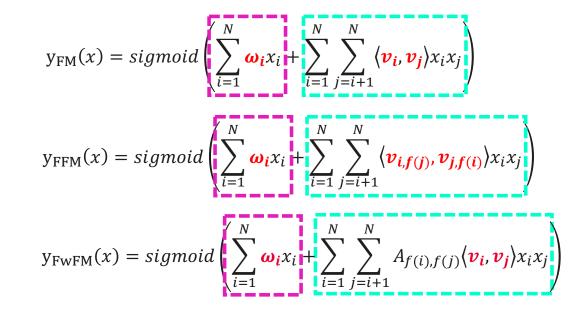
Background

 Factorization models are the models where the interaction of several embeddings from different features is modeled into a real number by some operation such as inner product or neural network



Challenges

- Enumerate all feature interactions
 - Large memory and computation cost and difficult to be extended into high-order interactions
 - Useless interaction
- Require human efforts to identify important feature interactions
 - high labor cost
 - risks missing some counterintuitive (but important) interactions



Outline

- AutoML in Embedding Layer
 - NIS Neural Input Search for Large Scale Recommendation Models (KDD'2020)
 - **ESAPN** Automated Embedding Size Search in Deep Recommender Systems (SIGIR'2020)
 - AutoDim Field-aware Embedding Dimension Search in Recommender Systems (WWW'2021)
 - AutoDis Automatic Discretization for Embedding Numerical Features in CTR Prediction (AAAI'2021)

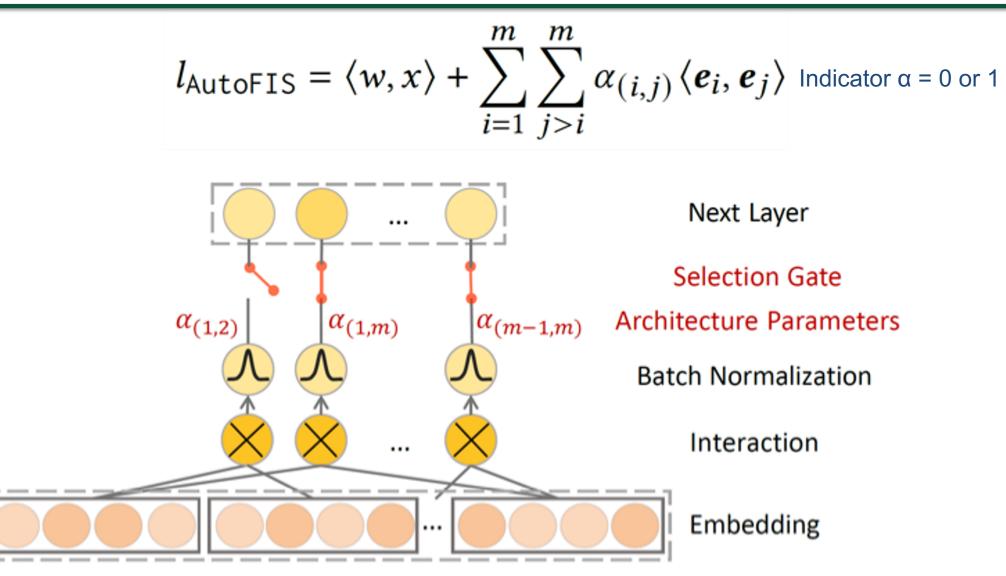
AutoML in Interaction Layer

- AutoFIS Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction (KDD'2020)
- AutoGroup Automatic Feature Grouping for Modelling Explicit High-Order Feature Interactions in CTR Prediction (SIGIR'2020)
- AutoCTR Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction (KDD'2020)

AutoFIS

- Search Stage
 - Detect useful feature interactions
- Retrain Stage
 - Retrain model with selected feature interactions

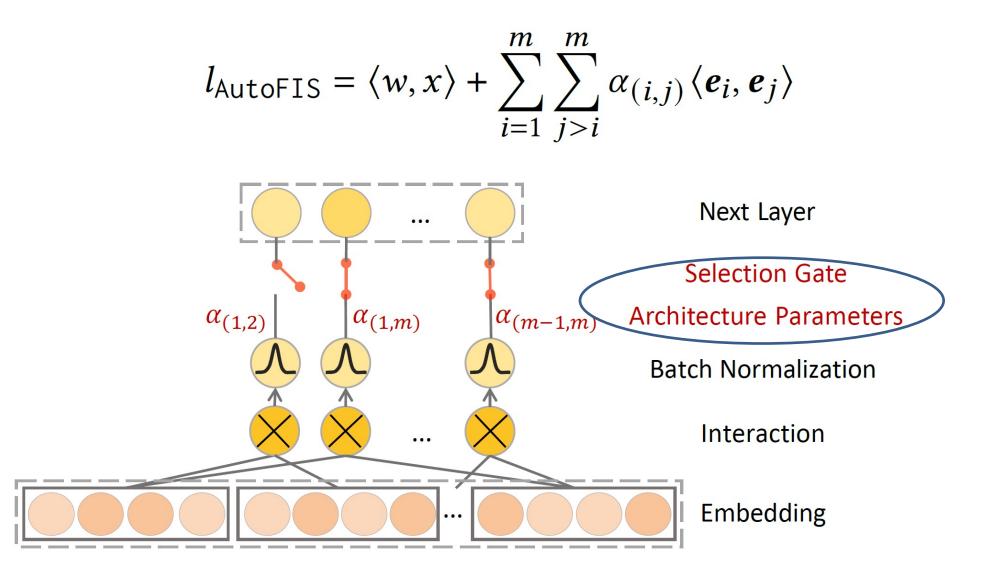
Search Stage



Search Stage

- Gate for each feature interaction
 - Huge search space $2^{C_m^2}$
- Discrete search space -> Continuous search space
 - Architecture parameters α

Search Stage



Model	AUC	log loss	top	ReI. Impr
FM	0.8880	0.08881	100%	0
FwFM	0.8897	0.08826	100%	0.19%
AFM	0.8915	0.08772	100%	0.39%
FFM	0.8921	0.08816	100%	0.46%
DeepFM	0.8948	0.08735	100%	0.77%
AutoFM(2nd)	0.8944*	0.08665*	37%	0.72%
AutoDeepFM(2nd)	0.8979*	0.08560*	15%	1.11%

* denotes statistically significant improvement (measured by t-test with p-value<0.005). AutoFM compares with FM and AutoDeepFM compares with all baselines.

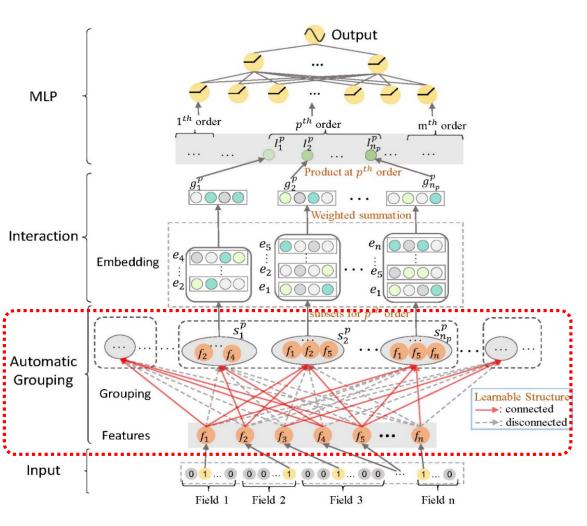
Outline

- AutoML in Embedding Layer
 - NIS Neural Input Search for Large Scale Recommendation Models (KDD'2020)
 - **ESAPN** Automated Embedding Size Search in Deep Recommender Systems (SIGIR'2020)
 - AutoDim Field-aware Embedding Dimension Search in Recommender Systems (WWW'2021)
 - AutoDis Automatic Discretization for Embedding Numerical Features in CTR Prediction (AAAI'2021)

AutoML in Interaction Layer

- AutoFIS Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction (KDD'2020)
- AutoGroup Automatic Feature Grouping for Modelling Explicit High-Order Feature Interactions in CTR Prediction (SIGIR'2020)
- AutoCTR Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction (KDD'2020)

Automatic Feature Grouping Stage



Each feature is possible to be selected into the feature sets of each order.

• $\Pi_{i,j}^p \in \{0,1\}$: whether select feature f_i into the j^{th} set of order-p.

To make the selection differentiable, we relax the binary discrete value to a softmax over the two possibilities:

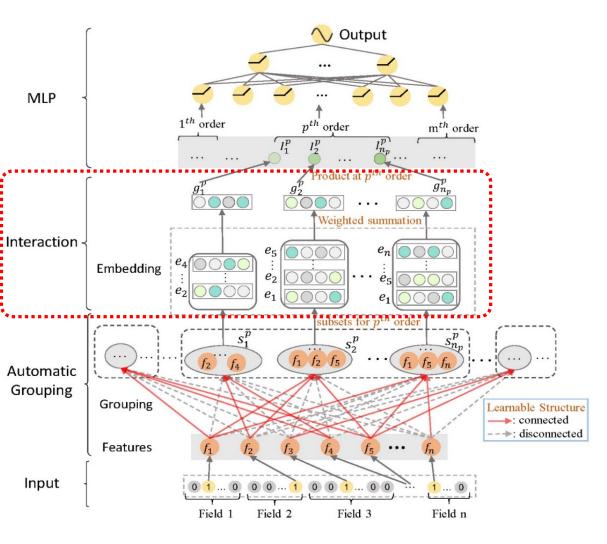
$$\overline{\Pi}_{i,j}^p = \frac{1}{1 + \exp(-\alpha_{i,j}^p)} \Pi_{i,j}^p + \frac{\exp(-\alpha_{i,j}^p)}{1 + \exp(-\alpha_{i,j}^p)} (1 - \Pi_{i,j}^p).$$

To learn a less-biased selection probability, we use Gumbel-Softmax:

$$\left(\overline{\Pi}_{i,j}^{p}\right)_{o} = \frac{\exp(\frac{\log \alpha_{o} + G_{o}}{\tau})}{\sum_{o' \in \{0,1\}} \exp(\frac{\log \alpha_{o'} + G_{o'}}{\tau})} \text{ where } o \in \{0,1\}$$
$$\alpha_{0} = \frac{1}{1 + \exp(-\alpha_{i,j}^{p})} \qquad \alpha_{1} = \frac{\exp(-\alpha_{i,j}^{p})}{1 + \exp(-\alpha_{i,j}^{p})}$$
$$G_{o} = -\log(-\log u) \text{ where } u \sim Uniform(0,1)$$

Trainable Parameters: $\{\alpha_{i,j}^p\}$

Interaction Stage



Feature set representation:

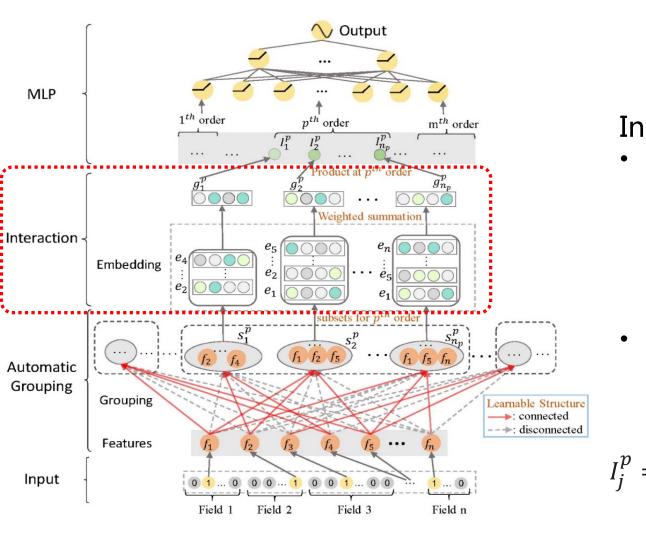
$$g_j^p = \sum_{f_i \in s_j^p} w_i^p \ e_i$$

 s_j^p : the j^{th} feature set for order-p feature interactions.

 e_i : embedding for feature f_i

 w_i^p : weights of embeddings in feature set s_j^p .

Interaction Stage

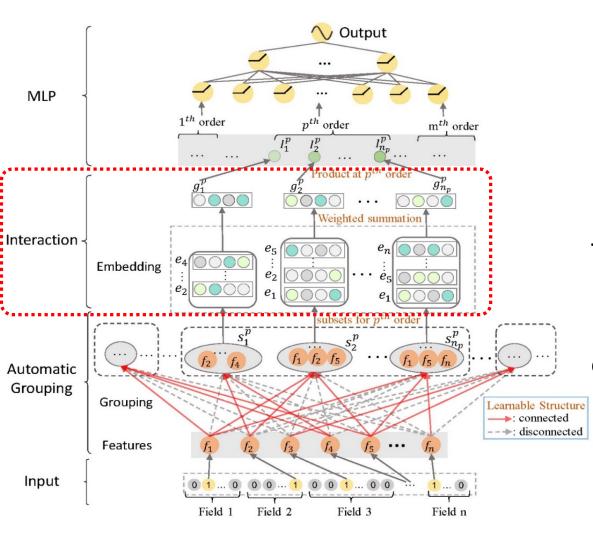


Interaction at a given order: Inspired by the reformulation of FM: $\hat{y}(x) = w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle e_i, e_j \rangle x_i x_j$ $= w_0 + \sum_{i=1}^n w_i x_i + \frac{1}{2} \left((\sum_{i=1}^n x_i e_i)^2 - \sum_{i=1}^n (x_i e_i)^2 \right)$ The order-*p* interaction in a given set s_i^p is defined as:

$$= \begin{cases} \left(\left(g_{j}^{p} \right)^{p} - \sum_{f_{i} \in s_{j}^{k}} \left(w_{i}^{p} e_{i} \right)^{p} \right) \in R, p \geq 2 \\ g_{j}^{p} \in R^{\kappa}, \qquad p = 1 \end{cases}$$

۲

Interaction Stage



Parameter Training:

The structural parameters $\{\alpha_{i,j}^p\}$ and other normal parameters (embedding parameters and network parameters) are optimized alternatively in bi-level optimization (DARTS).

Outline

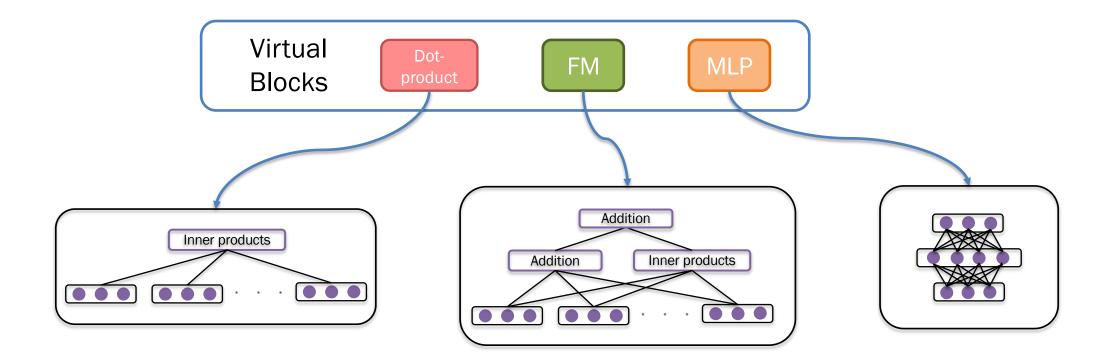
- AutoML in Embedding Layer
 - NIS Neural Input Search for Large Scale Recommendation Models (KDD'2020)
 - **ESAPN** Automated Embedding Size Search in Deep Recommender Systems (SIGIR'2020)
 - AutoDim Field-aware Embedding Dimension Search in Recommender Systems (WWW'2021)
 - AutoDis Automatic Discretization for Embedding Numerical Features in CTR Prediction (AAAI'2021)

AutoML in Interaction Layer

- AutoFIS Automatic Feature Interaction Selection in Factorization Models for Click-Through Rate Prediction (KDD'2020)
- AutoGroup Automatic Feature Grouping for Modelling Explicit High-Order Feature Interactions in CTR Prediction (SIGIR'2020)
- AutoCTR Towards Automated Neural Interaction Discovery for Click-Through Rate Prediction (KDD'2020)

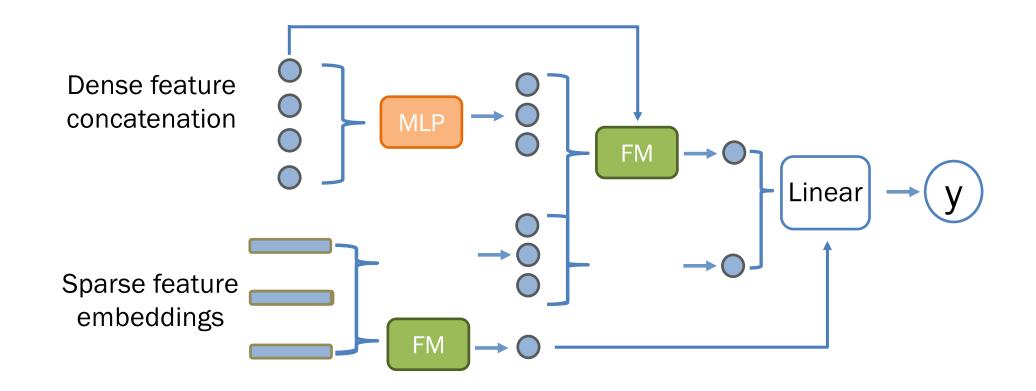
AutoCTR - Hierarchical Search Space

- Virtual block abstraction
 - Properties: functionality complementary, complexity aware, ...
 - Examples: MLP block, dot-product block, factorization-machine block, ...

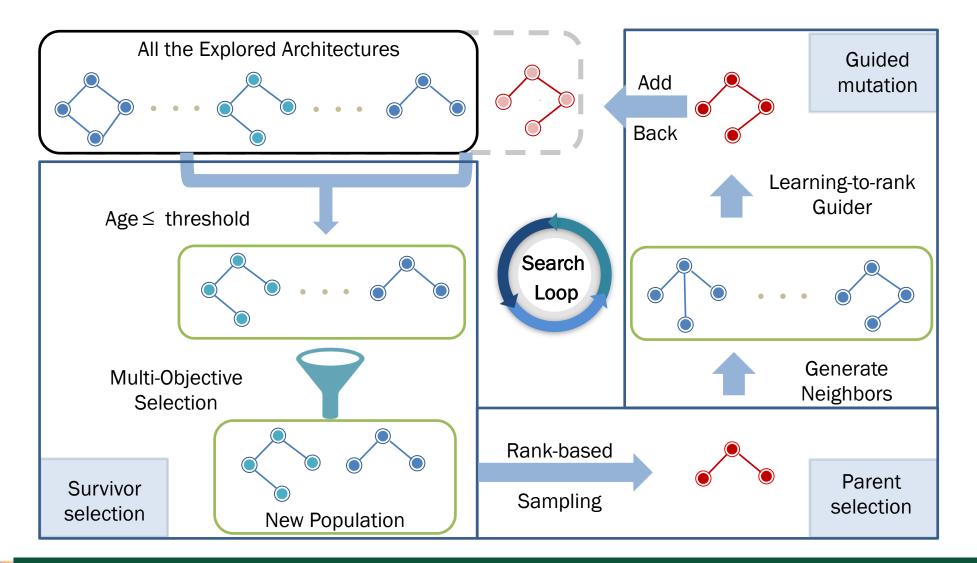


AutoCTR

- Search space construction
 - DAG of virtual blocks and grouped feature embeddings
 - Both block hyperparameters and connection among blocks are to be searched



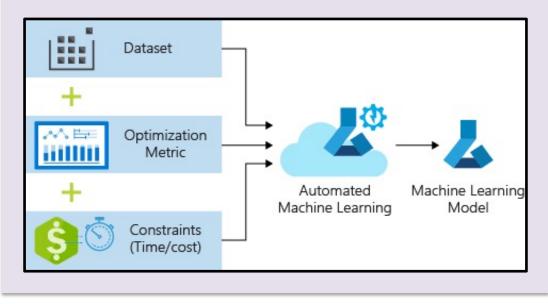
AutoCTR - Multi-Objective Evolutionary Search Algorithm 😵 👬



Conclusion

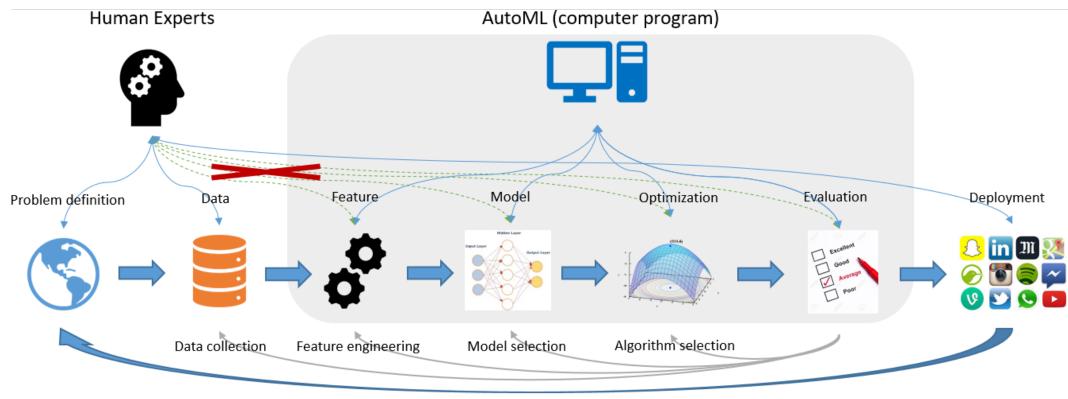
- Deep architectures are designed by the machine automatically
- Advantages
 - Less expert knowledge
 - Saving time and efforts
 - Different data → different architectures

Automated Machine Learning



Future Directions

- Applying AutoML to more tasks
 - Feature engineering, model selection, optimization algorithm, model evaluation, etc



Applying to real applications

