

Identity Authentication

Face Verification

Fingerprint Verification

User interaction

Smartphone

Laptop

Medical record

Medical electronic patient record system

Privacy in Al

- The success of AI systems heavily relies on data that might contain private and sensitive information.
- Can we still take the advantages of data while effectively protecting the privacy?

Machine Learning in Al

A typical pipeline

Privacy Leakage in Al

Data & model

□ Black-box & white-box setting

Training & test phase

□ Honest-but-curious & fully malicious

Privacy Leakage in Al

Membership Inference

To identify whether a data record is used in the training of model

Shokri, Reza, et al. "Membership inference attacks against machine learning models." 2017.

Data Sharing

User's data are collected and shared in the data center to train AI systems

Gradient Leakage

Distributed learning over mobile devices by synchronizing/sharing gradients

ML models

- Text autocorrection
- Next word prediction
- Word completion

Local computation

Gradient Leakage (Continued)

Steal training data from the gradient information in distributed learning

Zhu, Ligeng, and Song Han. "Deep leakage from gradients." 2020.

Gradient Leakage (Continued)

Steal training data from the gradient information in distributed learning

Zhu, Ligeng, and Song Han. "Deep leakage from gradients." 2020.

Model Inversion

To infer the information of the input data using the model's output

Recover the face image given the person's name and the class confidence of a facial recognition system

Model Extraction

To extract the model information by querying the model in a black-box setting

Privacy Preservation in Al

Differential Privacy

It aims to reduce the disclosure about individual information in a dataset

 \Box A randomized algorithm A is (ε, δ) -differentially private if for all $S \in \text{Range}(A)$ and for all adjacent datasets D and D' such that

 $\Pr[\mathcal{A}(D) \in \mathcal{S}] \le e^{\epsilon} \Pr(\mathcal{A}(D') \in \mathcal{S}) + \delta$

 \Box If (ϵ,δ) are sufficiently small, the output of the algorithm A will be almost identical

 $\Pr[\mathcal{A}(D) \in \mathcal{S}] \approx \Pr(\mathcal{A}(D') \in \mathcal{S})$

Differential Privacy

- Random response
- Gaussian mechanism
- Laplace mechanism

Exponential mechanism

- Flip a coin
- If tails, then respond truthfully.
- If heads, then flip a second coin and respond "Yes" if heads and "No" if tails

Federated Learning

Clients collaboratively train a model while keeping the data decentralized

Kairouz, Peter, et al. "Advances and open problems in federated learning." (2019).

Workflow of Federated Learning

Confidential Computing

□ Trusted Execution Environment (TEE)

• Isolating data and programs by software and hardware techniques

□ Homomorphic Encryption

• Computing functions on ciphertext without decryption

□ Secure Multi-party Computation (MPC)

• Jointly performing function computations on private data

Secure Multi-party Computation

Federated Learning with Secure Aggregation

Bonawitz, Keith, et al. "Practical secure aggregation for federated learning on user-held data." 2016. Bonawitz, Keith, et al. "Practical secure aggregation for privacy-preserving machine learning." 2017.

Deep Learning

Differentially private SGD

Input: Examples $\{x_1, \ldots, x_N\}$, loss function $\mathcal{L}(\theta) =$
$\frac{1}{N}\sum_{i}\mathcal{L}(\theta, x_{i})$. Parameters: learning rate η_{t} , noise scale
σ , group size L, gradient norm bound C.
Initialize θ_0 randomly
$\mathbf{for}t\in[T]\mathbf{do}$
Take a random sample L_t with sampling probability
L/N
Compute gradient
For each $i \in L_t$, compute $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$
Clip gradient
$ar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\ \mathbf{g}_t(x_i)\ _2}{C}\right)$
Add noise
$ ilde{\mathbf{g}}_t \leftarrow rac{1}{L} \left(\sum_i ar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I}) ight)$
Descent
$ heta_{t+1} \leftarrow heta_t - \eta_t ilde{\mathbf{g}}_t$
Output θ_T and compute the overall privacy cost (ε, δ)
using a privacy accounting method.

Add Gaussian noise into gradient

Biometric Data Analysis

Differentially private facial recognition

Chamikara, Mahawaga, et al. "Privacy preserving face recognition utilizing differential privacy." 2020.

Drug development

Host OS

Medical imaging

Surveys

General concepts

- Al-Rubaie, Mohammad, and J. Morris Chang. "Privacy-preserving machine learning: Threats and solutions." 2019
- De Cristofaro, Emiliano. "An overview of privacy in machine learning." 2020
- Rigaki, Maria, and Sebastian Garcia. "A survey of privacy attacks in machine learning." 2020

Differential privacy

- Dwork, Cynthia. "Differential privacy: A survey of results." 2008
- Dwork, Cynthia, and Aaron Roth. "The algorithmic foundations of differential privacy." 2014
- Ji, Zhanglong, Zachary C. Lipton, and Charles Elkan. "Differential privacy and machine learning: a survey and review." 2014

Federated Learning

- Kairouz, Peter, et al. "Advances and open problems in federated learning." 2019
- Yang, Qiang, et al. "Federated machine learning: Concept and applications." 2019

Tools

Differential Privacy

- TensorFlow Privacy
- Opacus
- OpenDP
- Diffpriv

□ Federated Learning

- TensorFlow Federated (TFF)
- Paddle Federated Learning
- FATE
- FedML
- LEAF

Confidential Computing

- Keystone Enclave
- Google's FHE Repository
- IBM FHE toolkit
- AWS HE toolkit
- SHEEP
- CBMC-GC
- Conclave
- CipherCompute
- MPC-SoK
- HyCC
- UC Compiler

Future Directions

- Uncovering more sources of potential privacy leakage in AI systems
- Improving the performance of federated learning in heterogeneous environments
- **D** Exploiting a better trade-off between utility and privacy loss in DP
- Improving the computation efficiency and flexibility of confidential computing
- Integrated systems and solutions