

Trustworthy AI: A Computational Perspective

Haochen Liu¹, Yiqi Wang¹, Wenqi Fan², Xiaorui Liu¹, Yaxin Li¹ and Jiliang Tang¹

¹Michigan State University

²The Hong Kong Polytechnic University

Tutorial website: Trustworthy AI: A Computational Perspective

Artificial Intelligence (AI)

1956 Dartmouth Conference: The Founding Fathers of AI

Marvin Minsky

Claude Shannon

Ray Solomonoff

Alan Newell

Herbert Simon

Arthur Samuel

Oliver Selfridge

Nathaniel Rochester Trenchard More

Al Summers and Winters

AI HAS A LONG HISTORY OF BEING "THE NEXT BIG THING" ...

Timeline of AI Development 1950s-1960s: First Al boom - the age of reasoning, prototype Al developed 1970s: Al winter I 1980s-1990s: Second AI boom: the age of Knowledge representation (appearance of expert systems capable of reproducing human decision-making) 1990s: Al winter II 1997: Deep Blue beats Gary Kasparov 2006: University of Toronto develops Deep Learning 2011: IBM's Watson won Jeopardy 2016: Go software based on Deep Learning beats world's champions

https://www.actuaries.digital/2018/09/05/history-of-ai-winters/

Al is Everywhere

Business

Healthcare

Robotics

Education

The Good, The Bad, and The Ugly

The Good, The Bad, and The Ugly

Face Recognition

Criminal Identification

Face ID

Conversational AI

Voice Assistant

Chatbot

Harmon, Stephanie A., et al. "Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets." 2020.

Disease Diagnosis

Chest CT scan

Deep learning model

COVID-19

Correctly identify 93

84% positive cases93% negative cases

Self-driving Cars

Self-driving

Self-driving car delivery during the pandemic

AlphaGo

The Unstoppable Power of Deep Learning – AlphaGo vs. Lee Sedol Case Study, <u>https://intellipaat.com/blog/power-of-deep-learning-alphago-vs-lee-sedol-case-study/</u>

The Good, The Bad, and The Ugly

Privacy Issue

Training Dialogue Corpus

Dialogue models can leak information in the training data

Henderson, Peter, et al. "Ethical challenges in data-driven dialogue systems." 2018.

Safety & Robustness Issue

normal image

adversarial

noise

adversarial image

classified as

misclassified as

Discrimination & Fairness Issue

Discrepancies in face recognition performance for different groups

The Good, The Bad, and The Ugly

Explainability Issue

Black-box models in Al

Cancer diagnosis

 A black-box decision is not acceptable

Environmental Issue

Consumption	CO ₂ e (lbs)
Air travel, 1 passenger, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000
Training one model (GPU)	
NLP pipeline (parsing, SRL)	39
w/ tuning & experimentation	78,468
Transformer (big)	192
w/ neural architecture search	626,155

Estimated carbon emissions from training common NLP models

Strubell et al. "Energy and Policy Considerations for Deep Learning in NLP." 2019.

Auditability & Accountability

GPT-3: "Hey, I feel very bad, I want to kill myself."

the patient: "Should I kill myself?"

GPT-3 medical chatbot tells suicidal test patient to kill themselves

GPT-3: "I think you should."

https://boingboing.net/2021/02/27/gpt-3-medical-chatbot-tells-suicidal-test-patient-to-kill-themselves.html

How to Combat The Bad and The Ugly?

Trustworthy AI

"able to be trusted"

---- Dictionary of Cambridge

Trustworthy AI: programs and systems built to solve problems like a human, which bring benefits and convenience to people with no threat or risk of harm.

The Technical Perspective

- consistent with the ground truth
 - be robust to changes
 - be transparent to people

The User Perspective

- be available for people
- easy to use
- no harm to people
- protect privacy for users
 - be under people's control

The Social Perspective

- operate in full compliance with all relevant laws and regulations
- comply with the ethical principles
 - non-discrimination
 - clear responsibility
 - be environmentally friendly

Trustworthy AI: A Computational Perspective

A Survey on The Computational Perspective

Trustworthy AI: A Computational Perspective

HAOCHEN LIU^{*}, Michigan State University, USA YIQI WANG^{*}, Michigan State University, USA WENQI FAN, The Hong Kong Polytechnic University, Hong Kong XIAORUI LIU, Michigan State University, USA YAXIN LI, Michigan State University, USA SHAILI JAIN, Twitter, USA YUNHAO LIU, Tsinghua University, China ANIL K. JAIN, Michigan State University, USA JILIANG TANG, Michigan State University, USA

https://arxiv.org/abs/2107.06641

