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There exist both accordance and the conflicts among the six dimensions.
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Accordance: Robustness v.s. Explainability
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Adversarial Robustness and Saliency Map
Interpretability

Etmann, Christian, et al. "On the connection between adversarial robustness and saliency map interpretability."
arXiv preprint arXiv:1905.04172 (2019).
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Accordance: Fairness v.s. Environmental Well- (as
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Conflicts: Privacy v.s. Robustness

Privacy

Robustness

Models trained with adversarial defense
approaches are more likely to expose
sensitive information in training data via
membership inference attacks.
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The Privacy Risk of Securing Deep Learning
Models against Adversarial Examples

Models trained with adversarial defense approaches are more likely to expose sensitive

information in training data via membership inference attacks.
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(a) Adversarially robust model from Madry et al. [33], with 99% train (b) Naturally undefended model, with 100% train accuracy and 95%
accuracy and 87% test accuracy. test accuracy. Around 23% training and test examples have zero loss.

Song, Liwei, et, al. "Privacy risks of securing machine learning models against adversarial examples." 2019.
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Conflicts: Fairness v.s. Robustness

Fairness

Robustness

Recent research indicates that adversarial
training can introduce a significant disparity of
performance and robustness among different
groups, even if the datasets are balanced.
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Conflicts: Fairness v.s. Privacy

Fairness

Privacy

Recent research theoretically proves that
differential privacy and exact fairness in
terms of equal opportunity are unlikely to
be achieved simultaneously.
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