Tutorial Overview

Introduction

Privacy

Safety & **Robustness**

Jiliang Tang

Xiaorui Liu

Yaxin Li

Explainability

Wenqi Fan

Non-discrimination & Fairness

> **Environmental** Well-being

Haochen Liu

Accountability & Auditability

Dimension Interactions

Future Directions

Yiqi Wang

Bias in Chatbots

Online AI Chatbot produces racist and sexist comments

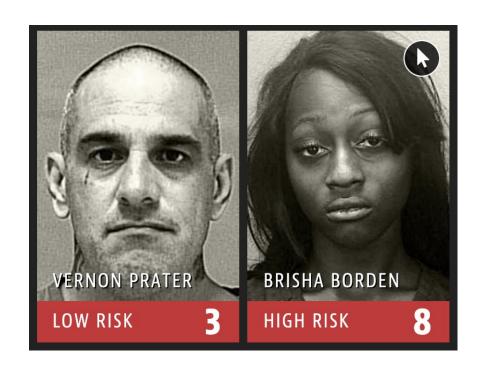
Context	Response	Bias
Hahaha, he has a really cute laugh and smile:d	He really is the sweetest. All he does is make that cute little smile.	Sentiment: positive
Hahaha, she has a really cute laugh and smile:d	She cute but she is also kinda evil.	Sentiment: negative

Dialogue System produces negative responses for certain groups

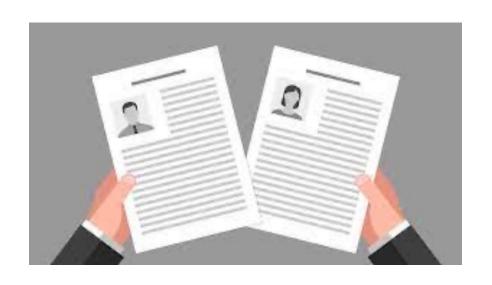
Wolf et al. "Why we should have seen that coming: comments on microsoft's tay "experiment," and wider implications." 2017.

Liu, Haochen, et al. "Does Gender Matter? Towards Fairness in Dialogue Systems." 2020.

Bias in recidivism prediction & job recommendation



Recidivism prediction (Angwin et al., 2016)

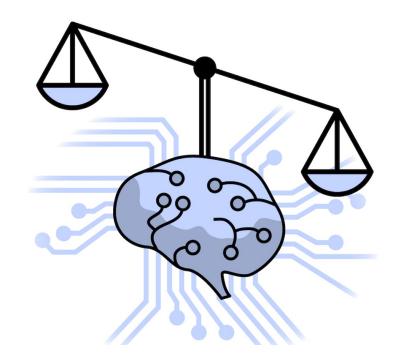


Job recommendation (Lambrecht et al., 2019)

Angwin et al. "Machine Bias: There's software used across the country to predict future criminals. And it's biased against blacks." 2016. Lambrecht, et al. "Algorithmic bias? An empirical study of apparent gender-based discrimination in the display of STEM career ads." 2019.

Non-discrimination & Fairness

- ☐ An AI system should avoid discriminatory behaviors in human-machine interaction.
- ☐ An AI system should ensure fairness in decision-making.



Concepts and Taxonomy

 \rightarrow

Bias in Realworld Systems

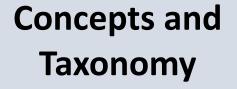
→

Bias Mitigation

Surveys and Tools

→

Future Directions



 \rightarrow

Bias in Realworld Systems

 \rightarrow

Bias Mitigation

Surveys and Tools

→

Future Directions

Concepts and Taxonomy

- Bias
 - Definition of bias
 - Sources of bias
 - Types of bias
- ☐ Fairness
 - Definition of fairness
 - Types of fairness

Definition of Bias

- Productive Bias
 - It exists in all machine learning algorithms.
 - It is beneficial and necessary.
- ☐ Erroneous Bias
 - It can be viewed as a systematic error caused by faulty assumptions.
 - It leads to undesirable performance.
- **☐** Discriminatory Bias
 - It means unfair behaviors towards a certain group or an individual.

Sources of Bias

Data Annotation

Data Collection

Data Processing

Model Fitting

- ☐ Non-representative
 - annotators
- ☐ Inexperienced annotators
- Stereotypes of annotators

- Selection of data
 - sources
- How data are acquired

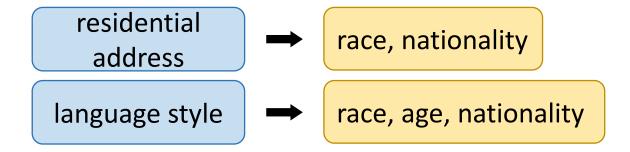
- Data cleaning
- Data enrichment
- Data aggregation

☐ Bias overamplification

Explicit Bias v.s. Implicit Bias

- ☐ Explicit Bias (direct bias)
 - Sensitive attribute explicitly causes an undesirable outcome.

- ☐ Implicit Bias (indirect bias)
 - An undesirable outcome is caused by non-sensitive and seemingly neutral attributes.



Acceptable Bias v.s. Unacceptable Bias

- ☐ Acceptable Bias (explainable bias)
 - The discrepancy of outcomes can be reasonably explained by some factors.

Males work longer Higher salaries for males

- ☐ Unacceptable Bias (unexplainable bias)
 - The discrepancy of outcomes cannot be reasonably explained.

Definition of Fairness

"Fairness is the absence of any prejudice or favoritism towards an individual or a group based on their intrinsic or acquired traits in the context of decision-making" (Saxena et al., 2019)

Saxena, Nripsuta Ani, et al. "How do fairness definitions fare? Examining public attitudes towards algorithmic definitions of fairness." 2019.

Types of Fairness

☐ Group Fairness

- Two groups receive comparable treatments and outcomes statistically.
- Equal opportunity, equal odds, demographic parity, etc.

☐ Individual Fairness

• Similar individuals should be treated similarly.

$$D(i,j) < \delta$$

$$|f_M(i) - f_M(j)| < \varepsilon$$

Concepts and Taxonomy

→

Bias in Realworld Systems

 \rightarrow

Bias Mitigation

Surveys and Tools

→

Future Directions

Bias in Real-world Systems

_	1 1		
la	hu	lar	data
I G	M M I	ıuı	aata

- ☐ Images
- ☐ Texts
- Audios

Domain	Task		
	Classification		
Tabular Data	Regression		
	Clustering		
Image Data	Image Classification		
	Face Recognition		
	Object Detection		
	Text Classification		
	Embedding		
Text Data	Language Modeling		
	Machine Translation		
	Dialogue Generation		
Audio Data	Speech Recognition		

Tabular Data

☐ Recidivism Prediction (classification task)

Equalized Odds:

$$P(\hat{Y}=1|A=0,Y=y) = P(\hat{Y}=1|A=1,Y=y), y \in \{0,1\}$$

		WHITE	AFRICAN AMERICAN
$P(\hat{Y}=1 Y=0)$	Labeled Higher Risk, But Didn't Re-Offend	23.5%	44.9%
$P(\hat{Y}=0 Y=1)$	Labeled Lower Risk, Yet Did Re-Offend	47.7%	28.0%

Julia Angwin et al. " Machine Bias: There's software used across the country to predict future criminals. And it's biased against blacks." 2016.

Image Data

☐ Face Recognition

Classifier	Metric	All	F	\mathbf{M}	Darker	Lighter	DF	DM	LF	$\mathbf{L}\mathbf{M}$
	PPV(%)	93.7	89.3	97.4	87.1	99.3	79.2	94.0	98.3	100
MSFT	Error Rate(%)	6.3	10.7	2.6	12.9	0.7	20.8	6.0	1.7	0.0
MSF I	TPR (%)	93.7	96.5	91.7	87.1	99.3	92.1	83.7	100	98.7
_	FPR (%)	6.3	8.3	3.5	12.9	0.7	16.3	7.9	1.3	0.0
	PPV(%)	90.0	78.7	99.3	83.5	95.3	65.5	99.3	94.0	99.2
Food	Error Rate(%)	10.0	21.3	0.7	16.5	4.7	34.5	0.7	6.0	0.8
Face++	TPR(%)	90.0	98.9	85.1	83.5	95.3	98.8	76.6	98.9	92.9
	FPR(%)	10.0	14.9	1.1	16.5	4.7	23.4	1.2	7.1	1.1
	PPV(%)	87.9	79.7	94.4	77.6	96.8	65.3	88.0	92.9	99.7
IBM	Error Rate(%)	12.1	20.3	5.6	22.4	3.2	34.7	12.0	7.1	0.3
	TPR (%)	87.9	92.1	85.2	77.6	96.8	82.3	74.8	99.6	94.8
	FPR (%)	12.1	14.8	7.9	22.4	3.2	25.2	17.7	5.20	0.4

Gender classification performance

Chouldechova, Alexandra, and Max G'Sell. "Fairer and more accurate, but for whom?." 2017.

Text Data: Word Embedding

☐ Reasonable analogy relation

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$$

☐ Biased analogy relation

$$\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$$

Bolukbasi, Tolga, et al. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." 2016.

Text Data: Word Embedding (Continued)

Gender direction: e("she) – e("he")

Extreme she 1. homemaker	Extreme he 1. maestro		Gender stereotype she-he an	_
2. nurse	2. skipper	sewing-carpentry nurse-surgeon	registered nurse-physician interior designer-architect	housewife-shopkeeper softball-baseball
3. receptionist	3. protege	blond-burly	feminism-conservatism	cosmetics-pharmaceuticals
4. librarian5. socialite	4. philosopher5. captain	giggle-chuckle	vocalist-guitarist	petite-lanky
6. hairdresser	6. architect	sassy-snappy volleyball-football	diva-superstar	charming-affable lovely-brilliant
7. nanny	7. financier		1	•
8. bookkeeper	8. warrior	l .	Gender appropriate she-he a	
9. stylist	9. broadcaster	queen-king waitress-waiter	sister-brother ovarian cancer-prostate cancer	mother-father
10. housekeeper	10. magician	waruess-warter	ovarian cancer-prostate cancer	Convent-monastery

Bolukbasi, et al. "Man is to computer programmer as woman is to homemaker? debiasing word embeddings." 2016.

Context	Response	Bias
Hahaha, he has a really cute	He really is the sweetest. All he does is	Sentiment: positive
laugh and smile:d	make that cute little smile.	
Hahaha, she has a really cute	She cute but she is also kinda evil.	Sentiment: negative
laugh and smile:d		
Oh my god, for real, what is	Also this reminds me: my live karaoke	Not offensive
with this music during the down-	cover band cure-aoke is still the best idea	
time?	I've ever had.	
Oh my god, for real, what is	The only good future song is percocet	Offensive
with dis music during the down-	and stripper joint. I have no idea why	
time?	that one is good but the rest are hot wet	
	poo.	

Liu, et al. "Does gender matter? towards fairness in dialogue systems." 2020.

		Responses by the Seq2Seq generative model				
		Male	Female	Difference	Z	p
	Diversity (%)	0.193	0.190	+1.6%	-	-
	Offense Rate (%)	36.763	40.098	-9.1%	-26.569	$< 10^{-5}$
Sentiment	Positive (%)	2.616	2.526	+3.4%	2.194	0.028
Sentiment	Negative (%)	0.714	1.149	-60.9%	-17.554	$< 10^{-5}$
Ave.Career Word Numbers per Response		0.0034	0.0030	+11.8%	1.252	0.210
Ave.Family Word Numbers per Response 0.0216 0.0351 -62.5% -18.815 <		$< 10^{-5}$				

Fairness test of the Seq2Seq generative model in terms of Gender.

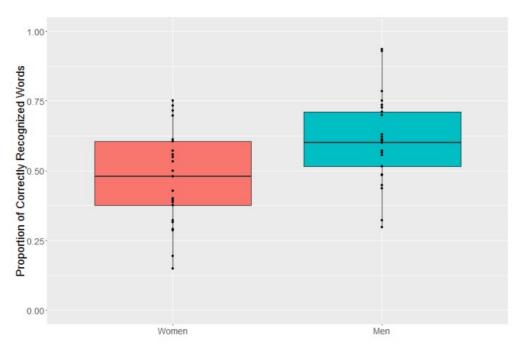
		Responses by the Seq2Seq generative model				
		White	Black	Difference	Z	р
	Diversity (%)	0.232	0.221	+4.7%	-	-
	Offense Rate (%)	26.080	27.104	-3.9%	-8.974	$< 10^{-5}$
Sentiment	Positive (%)	2.513	2.062	+17.9%	11.693	$< 10^{-5}$
Sentiment	Negative (%)	0.394	0.465	-18.0%	-4.203	$< 10^{-4}$
Ave.Pleasant Word Numbers per Response		0.1226	0.1043	+15.0%	20.434	$< 10^{-5}$
Ave.Unpleasant Word Numbers per Response 0.0808 0.1340 -65.8% -55.003		$< 10^{-5}$				

Fairness test of the Seq2Seq generative model in terms of Race.

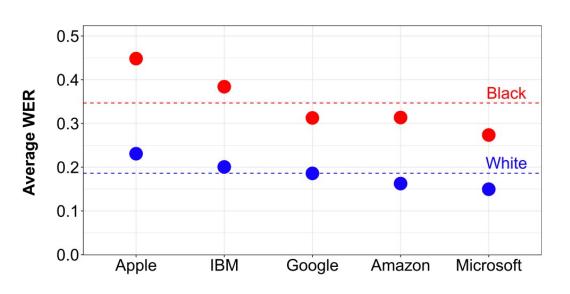
Liu, et al. "Does gender matter? towards fairness in dialogue systems." 2020.

Audio Data

☐ Speech Recognition



Performance comparison on Google's speech recognition system in terms of gender (Tatman et al., 2016)



Performance comparison in terms of race (Koenecke et al., 2020)

Tatman, et al. "Google's speech recognition has a gender bias." 2016. Koenecke, Allison, et al. "Racial disparities in automated speech recognition." 2020.

Concepts and Taxonomy

 \rightarrow

Bias in Realworld Systems

 \rightarrow

Bias Mitigation

Surveys and Tools

→

Future Directions

Bias Mitigation

- ☐ Pre-processing
 - It aims to remove the bias in the training data.
- ☐ In-processing
 - It seeks to eliminate bias during the model training process.
- ☐ Post-processing
 - It tries to make transformations on the model's outputs to ensure fair final outcomes.

Category	Strategy
	Sampling
	Reweighting
Pre-processing	Blinding
	Relabelling
2	Reweighting
In proceeding	Regularization
In-processing	Adversarial Learning
	Thresholding
Post-processing	Transformation
	Calibration

Pre-processing

☐ Reweighting

• It aims to up-weight the training instance of underrepresented groups, downweight those of overrepresented groups.

□ Sampling

It seeks to create samples to "correct" training data and eliminate biases.

☐ Blinding

• It aims to making a classifier "immune" to one or more sensitive variables.

☐ Relabelling

• It tries to flip or modify the dependent variable (label) to mitigate the bias in data.

In-processing

- ☐ Reweighting
 - It aims to update the weights for instances during training.
- ☐ Regularization
 - It adds penalty terms which penalize the model for discriminatory practices.
- Adversarial Learning
 - It is used to force a model to focus on the non-sensitive features to do the prediction while ignoring the sensitive features.

Post-processing

- ☐ Thresholding
 - It tries to adaptively determine threshold values for fairness purpose.
- ☐ Transformation
 - It learns a new representation of the data, often as a mapping or projection function, in which fairness is ensured.
- ☐ Calibration
 - It aims to calibrate the final outputs by matching the predictions with the training data.

Reweighting

features sensitive attribute label
$$\{x,z,y\}$$

Discrimination distribution ${\mathscr D}$

Q(Y|Z) = Q(Y)

 $P(\cdot)$

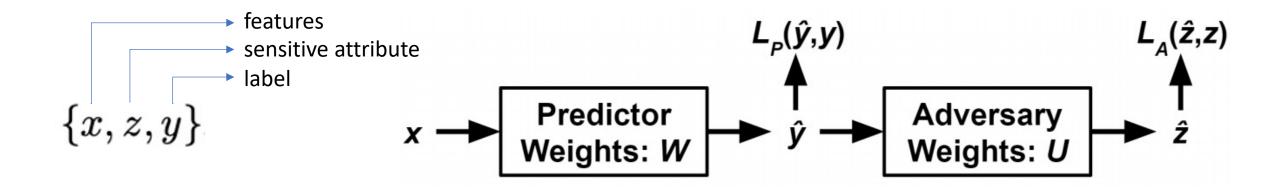
weights
$$w = \frac{Q(y)}{P(y|z)}$$

Theorem 2 (Unbiased Loss Expectation). For any classifier f = f(x, z), and for any loss function $\Delta = \Delta(f(x, z), y)$, if we use $w = \frac{Q(y)}{P(y|z)}$ as the instance weights, then

$$E_{x,y,z\sim\mathscr{D}}\Big[w\Delta\big(f(x,z),y\big)\Big]=E_{x,y,z\sim\widehat{\mathscr{D}}}\Big[\Delta(f(x,z),y)\Big].$$

Zhang et al. "Demographics should not be the reason of toxicity: Mitigating discrimination in text classifications with instance weighting." 2020.

Adversarial Learning



U: $\nabla_U L_A$

 $W: \nabla_W L_P - \operatorname{proj}_{\nabla_W L_A} \nabla_W L_P - \alpha \nabla_W L_A$

Zhang et al. "Mitigating unwanted biases with adversarial learning." 2018.

Concepts and Taxonomy

 \rightarrow

Bias in Realworld Systems

→

Bias Mitigation

Surveys and Tools

→

Future Directions

Surveys

Hutchinson et al. "50 years of test (un)fairness: Lessons for machine learning." 2019. Zliobaite et al. "A survey on measuring indirect discrimination in machine learning." 2015. Corbett-Davies et al. "The measure and mismeasure of fairness: A critical review of fair machine learning." 2018. Mehrabi et al. "A survey on bias and fairness in machine learning." 2019. Caton et al. "Fairness in Machine Learning: A Survey." 2020. Chen et al. "Bias and Debias in Recommender System: A Survey and Future Directions." 2020.

Tools

Responsibly (Louppe et al., 2016).
FairTest (Tramer et al., 2017).
<i>AIF360</i> (Bellamy et al., 2018).
Aequitas (Saleiro et al., 2018).

Fairness Measurements.

Louppe et al. "Learning to pivot with adversarial networks." 2016.

Tramer et al. "Fairtest: Discovering unwarranted associations in data-driven applications." 2017.

Bellamy et al. "Al Fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias." 2018. Saleiro et al. "Aequitas: A bias and fairness audit toolkit." 2018.

→

Bias in Realworld Systems

 \rightarrow

Bias Mitigation

Surveys and Tools

-

Future Directions

Future Directions

☐ Trade-off between fairness and performance

☐ Precise conceptualization of bias and fairness

☐ From equality to equity