

Founded USSS

Al in Critical Systems

How an AI model works?

The Need for Explainable AI

Lecue, Freddy, et al. "Explainable ai: Foundations, industrial applications, practical challenges, and lessons learned.", 2020.

Explainable AI

Why Explainability: Debug (Mis-)Predictions

Top label: "strawberry" (99%)

Why did the network label this image as "**strawberry**"?

Why Explainability: Verify the AI System

Wrong decisions can be costly and dangerous.

"Autonomous car crashes, because it wrongly recognizes ..."

"Al medical diagnosis system misclassifies patient's disease ..."

Why Explainability: Learn New Insights

"It's not a human move. I've never seen a human play this move... so beautiful." -- Fan Hui vs. AlphaGo

Outline

What is Explainable AI (XAI)?

- The degree to which a human can understand the cause of a decision.
 - Interpretable AI: intrinsically transparent and interpretable, rather than black-box/opaque models, such as decision trees and linear regression.
 - **Explainable** AI: additional (post hoc) explanation techniques, but still black-box and opaque, such as DNN.

From Black-box to "Transparent"

Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences.", 2019. Gilpin, Leilani H., et al. "Explaining explanations: An overview of interpretability of machine learning.", 2018.

Taxonomy

- □ Model **usage**: model-intrinsic and model-agnostic
 - Only restrict to a specific architecture of an AI model or not
- Differences in the **methodology**: gradient-based and perturbation-based
 - Employ the partial derivatives on inputs or change input data
- **Scope** of explanation: local and global
 - Provide an explanation only for a specific instance or for the whole model
- **Counterfactual** explanations
 - "If X had not occurred, Y would not have occurred."

Outline

Model usage

Only restrict to a specific architecture of an AI model or not

D Model-intrinsic Explanations

- Transparent or white-box explanation (model-specific)
- Model-agnostic Explanations
 - Interpret already well-trained models
 - Post-hoc or black-box explainability methods

Model usage: Model-intrinsic Explanations

□Transparent, or white-box explanation (model-specific)

• linear/logistic regression, decision trees, rule-based models, etc.

Decision tree

Model usage: Model-agnostic Explanations

Interpret already well-trained models

• Post-hoc or black-box explainability methods

□Local Interpretable Model-Agnostic Explanations (LIME)

• Approximating the black-box model by an interpretable one (such as linear model) learned on perturbations of the original instance.

$$\operatorname{explanation}(x) = \operatorname{arg\,min}_{g \in G} L(f, g, \pi_x) + \Omega(g)$$

Interpretable model
(linear models/decision tree, etc) Model complexity

Ribeiro, Marco Tulio, et al. "" Why should i trust you?" Explaining the predictions of any classifier.", 2016.

Model usage: Model-agnostic Explanations

LIME:

Original Image

Interpretable Components

Transforming an image into interpretable components

Model usage: Model-agnostic Explanations

Differences in the methodology

Employ the partial derivatives on inputs or change input data

Gradient-based Explanations

• Combine network activations and gradients

Perturbation-based Explanations

• Change the input and observe the effect on the output

Methodology: Gradient-based Explanations

□ Forward pass and back-propagation

• Class activation mapping (CAM), Grad-GAM

Zhou, Bolei, et al. "Learning deep features for discriminative localization.", 2016.

Methodology: Gradient-based Explanations

□ Forward pass and back-propagation

• Class activation mapping (CAM), Grad-GAM

GAP: Global Average Pooling

Zhou, Bolei, et al. "Learning deep features for discriminative localization.", 2016.

Methodology: Gradient-based Explanations

□ Forward pass and back-propagation

• Class activation mapping (CAM), Grad-GAM

Zhou, Bolei, et al. "Learning deep features for discriminative localization.", 2016. Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization.", 2017.

Methodology: Perturbation-based Explanations

Change the input and observe the effect on the output

- GNNExplainer on Graphs
 - A small subgraph of the input graph that are most influential for target prediction

Methodology: Perturbation-based Explanations

Change the input and observe the effect on the output

- GNNExplainer on Graphs
 - A small subgraph of the input graph that are most influential for target prediction

Molecular (atoms: hydrogen/carbon and bonds)

Computation graph GNNExplainer Ground Truth

Scope of Explanation

Provide an explanation only for a specific instance or for the whole model

Local Explanations

• Explain a specific instance

Global Explanations

• Explain the whole model or a class

Scope: Local Explanations

Explain a specific instance

• Image-Specific Saliency Map

 $SaliencyMap = gradient = rac{\partial \ class \ score}{\partial \ input \ image}$

$$I^* = argmax_IS_y(I) - R(I)$$

"Why is a given image classified as a monkey?"

Scope: Global Explanations

Explain the whole model or a class

- XGNN: Model/Global-level Explanations on Graphs
 - Explain what graph patterns lead to a certain prediction (e.g., motifs)

Yuan, Hao, et al. "XGNN: Towards Model-Level Explanations of Graph Neural Networks.", 2020

Max node: 3 Max node: 4 Max node: 5

XGNN: Model/Global-level Explanations on Graphs

Non-mutagenic p=0.9999 p=1.0000 p=1.0000 p=0.9999 p=1.0000 Mutagenic p=0.9999 p=1.0000 p=1.0000 p=0.9999 p=1.0000 Carbon Bromine 🖻 Fluorine Nitrogen (C) Chlorine Iodine Oxygen

Yuan, Hao, et al. "XGNN: Towards Model-Level Explanations of Graph Neural Networks.", 2020

Scope: Global Explanations

MUTAG (molecular: atoms/bonds)

Max node: 7

Max node: 6

Counterfactual Explanations

Causal situation: "If X had not occurred, Y would not have occurred".

Hendricks, Lisa Anne, et al. "Generating Counterfactual Explanations with Natural Language.", 2018

Outline

 Image: Concepts and Taxonomy
 Techniques for explainability in ai (XAI)
 Applications in real systems
 Surveys and tools

Recommender Systems

Explanations: Frequently Buy together, Also view, Buy after view, and Also buy, etc.

Natural Language Processing (NLP)

Ribeiro, Marco Tulio, et al. "" Why should i trust you?" Explaining the predictions of any classifier.", 2016.

Outline

 CONCEPTS AND TAXONOMY
 TECHNIQUES FOR
EXPLAINABILITY IN AI
(XAI)
 APPLICATIONS IN REAL
SYSTEMS
 SURVEYS AND TOOLS

Surveys

- Doshi-Velez, Finale, et al. "Towards a rigorous science of interpretable machine learning.", 2017.
- Guidotti, Riccardo, et al. "A survey of methods for explaining black box models.", 2018.
- Du, Mengnan, et al. "Techniques for interpretable machine learning.", 2019.
- Belle, Vaishak, et al. "Principles and practice of explainable machine learning.", 2020
- □ Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences.", 2019
- □ Molnar, Christoph. "Interpretable machine learning.", 2020
- □ Yuan, Hao, et al. "Explainability in Graph Neural Networks: A Taxonomic Survey.", 2020
- Arrieta, Alejandro Barredo, et al. "Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI.", 2020
- □ Linardatos, Pantelis, et al. "Explainable ai: A review of machine learning interpretability methods.", 2021

] ...

Liu, Haochen, et al. "Trustworthy AI: A Computational Perspective.", 2021.

Tools

AIX360	 https://aix360.mybluemix.net
InterpretML	 https://github.com/interpretml/interpret
DeepExplain	 https://github.com/marcoancona/DeepExplain
DIG for graph deep learning research	 https://github.com/divelab/DIG

Liu, Haochen, et al. "Trustworthy AI: A Computational Perspective.", 2021.

Future Directions

Given Security of explainable AI

Evaluation methodologies

□ Knowledge to target model: from white-box to black-box