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How an AI model works?
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Gunning, David,  et al. “Explainable Artificial Intelligence Research at DARPA”, 2019.

Learning  
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Data

Learned
Function

Output

Today

This is a cat
(p = .93)

• Why did you do that?
• Why not something else?
• When do you succeed?
• When do you fail?
• When can I trust you?
• How do I correct an error?

User with
a Task
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Black-box  
AI



Black-box AI creates confusion and doubt 
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User with
a Task

IT &Operations

Can I trust our AI  
decisions?

Business Owner

Data Scientists

Are these AI system  
decisions fair?

Internal Audit, Regulators

Customer Support

How do I answer this  
customer complaint?

How do I monitor and  
debug this model?

Is this the best model  
that can be built?

Output

The Need for Explainable AI

From Black-box 
to “Transparent”

Lecue, Freddy, et al. "Explainable ai: Foundations, industrial applications, practical challenges, and lessons learned.”, 2020.



Explainable AI
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Training  
Data

New 
Learning  
Process

Explainable  
Model

Explanation  
Interface

Tomorrow
• I understand why
• I understand why not
• I know when you’ll succeed
• I know when you’ll fail
• I know when to trust you
• I know why you erred

This is a cat:
•It has fur, whiskers, 
and claws.

•It has this feature:

User with 
a Task

©University Of Toronto

Gunning, David,  et al. “Explainable Artificial Intelligence Research at DARPA”, 2019.



Why Explainability: Debug (Mis-)Predictions
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Why Explainability: Verify the AI System
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Wrong decisions can be costly and dangerous.

“Autonomous car crashes, 
because it wrongly recognizes …”

“AI medical diagnosis system 
misclassifies patient’s disease …”

Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI’18



Why Explainability: Learn New Insights
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“It's not a human move. I've never seen a human play this 
move… so beautiful.” -- Fan Hui vs. AlphaGo



Outline
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CONCEPTS AND TAXONOMY TECHNIQUES FOR 
EXPLAINABILITY IN AI 

(XAI) 

APPLICATIONS IN REAL 
SYSTEMS

SURVEYS AND TOOLS



What is Explainable AI (XAI)?
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q The degree to which a human can understand the cause of a 

decision.

• Interpretable AI: intrinsically transparent and interpretable, rather than 

black-box/opaque models, such as decision trees and linear regression.

• Explainable AI: additional (post hoc) explanation techniques, but still 

black-box and opaque, such as DNN. 

From Black-box to “Transparent”

Miller, Tim. "Explanation in artificial intelligence: Insights from the social sciences.”, 2019.
Gilpin, Leilani H., et al. "Explaining explanations: An overview of interpretability of machine learning.", 2018.



Taxonomy

p Model usage: model-intrinsic and model-agnostic
• Only restrict to a specific architecture of an AI model or not

p Differences in the methodology: gradient-based and perturbation-based
• Employ the partial derivatives on inputs or change input data

p Scope of explanation: local and global
• Provide an explanation only for a specific instance or for the whole model

p Counterfactual explanations
• “If X had not occurred, Y would not have occurred.”

11



Outline
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CONCEPTS AND TAXONOMY TECHNIQUES FOR 
EXPLAINABILITY IN AI 

(XAI) 

APPLICATIONS IN REAL 
SYSTEMS

SURVEYS AND TOOLS



Model usage

p Only restrict to a specific architecture of an AI model or not

p Model-intrinsic Explanations

• Transparent or white-box explanation (model-specific)

p Model-agnostic Explanations

• Interpret already well-trained models

• Post-hoc or black-box explainability methods

13



Model usage: Model-intrinsic Explanations
qTransparent, or white-box explanation (model-specific)
• linear/logistic regression, decision trees, rule-based models, etc.

14

,QWHUSUHWDEOH 0RGHOV ��

'HFLVLRQ WUHH ZLWK DUWLILFLDO GDWD� ,QVWDQFHV ZLWK D YDOXH JUHDWHU WKDQ � IRU IHDWXUH [� HQG XS LQ QRGH �� $OO RWKHU
LQVWDQFHV DUH DVVLJQHG WR QRGH � RU QRGH �� GHSHQGLQJ RQ ZKHWKHU YDOXHV RI IHDWXUH [� H[FHHG ��

7KH IROORZLQJ IRUPXOD GHVFULEHV WKH UHODWLRQVKLS EHWZHHQ WKH RXWFRPH \ DQG IHDWXUHV [�

ŷ = f̂(x) =
M∑

m=1

cmI{x ∈ Rm}

(DFK LQVWDQFH IDOOV LQWR H[DFWO\ RQH OHDI QRGH � VXEVHW Rm�� I{x∈Rm} LV WKH LGHQWLW\ IXQFWLRQ WKDW
UHWXUQV � LI x LV LQ WKH VXEVHW Rm DQG � RWKHUZLVH� ,I DQ LQVWDQFH IDOOV LQWR D OHDI QRGH Rl� WKH SUHGLFWHG
RXWFRPH LV ŷ = cl� ZKHUH cl LV WKH DYHUDJH RI DOO WUDLQLQJ LQVWDQFHV LQ OHDI QRGH Rl�

%XW ZKHUH GR WKH VXEVHWV FRPH IURP" 7KLV LV TXLWH VLPSOH� &$57 WDNHV D IHDWXUH DQG GHWHUPLQHV
ZKLFK FXW�RII SRLQW PLQLPL]HV WKH YDULDQFH RI \ IRU D UHJUHVVLRQ WDVN RU WKH *LQL LQGH[ RI WKH FODVV
GLVWULEXWLRQ RI \ IRU FODVVLILFDWLRQ WDVNV� 7KH YDULDQFH WHOOV XV KRZ PXFK WKH \ YDOXHV LQ D QRGH DUH
VSUHDG DURXQG WKHLU PHDQ YDOXH� 7KH *LQL LQGH[ WHOOV XV KRZ ٪LPSXUH٫ D QRGH LV� H�J� LI DOO FODVVHV KDYH
WKH VDPH IUHTXHQF\� WKH QRGH LV LPSXUH� LI RQO\ RQH FODVV LV SUHVHQW� LW LV PD[LPDOO\ SXUH� 9DULDQFH
DQG *LQL LQGH[ DUH PLQLPL]HG ZKHQ WKH GDWD SRLQWV LQ WKH QRGHV KDYH YHU\ VLPLODU YDOXHV IRU \�
$V D FRQVHTXHQFH� WKH EHVW FXW�RII SRLQW PDNHV WKH WZR UHVXOWLQJ VXEVHWV DV GLIIHUHQW DV SRVVLEOH
ZLWK UHVSHFW WR WKH WDUJHW RXWFRPH� )RU FDWHJRULFDO IHDWXUHV� WKH DOJRULWKP WULHV WR FUHDWH VXEVHWV

linear regression model

Decision tree 

feature weight

decision

class label



Model usage: Model-agnostic Explanations
qInterpret already well-trained models
• Post-hoc or black-box explainability methods

qLocal Interpretable Model-Agnostic Explanations (LIME) 
• Approximating the black-box model by an interpretable one (such as linear 

model) learned on perturbations of the original instance.

15
Ribeiro, Marco Tulio, et al. "" Why should i trust you?" Explaining the predictions of any classifier.”, 2016.

Interpretable model 
(linear models/decision tree, etc)

Model complexity



Model usage: Model-agnostic Explanations

16
Ribeiro, Marco Tulio, et al. "" Why should i trust you?" Explaining the predictions of any classifier.”, 2016.

Transforming an image into interpretable components

LIME:



Model usage: Model-agnostic Explanations

17
Ribeiro, Marco Tulio, et al. "" Why should i trust you?" Explaining the predictions of any classifier.”, 2016.

LIME:



Differences in the methodology

q Employ the partial derivatives on inputs or change input data

qGradient-based Explanations
• Combine network activations and gradients

qPerturbation-based Explanations
• Change the input and observe the effect on the output

18



Methodology: Gradient-based Explanations
q Forward pass and back-propagation
• Class activation mapping (CAM), Grad-GAM

19
Zhou, Bolei, et al. "Learning deep features for discriminative localization.”, 2016.



Methodology: Gradient-based Explanations
q Forward pass and back-propagation
• Class activation mapping (CAM), Grad-GAM

20
Zhou, Bolei, et al. "Learning deep features for discriminative localization.”, 2016.

GAP: Global Average Pooling



Methodology: Gradient-based Explanations

21Zhou, Bolei, et al. "Learning deep features for discriminative localization.”, 2016.
Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization.”, 2017.

q Forward pass and back-propagation
• Class activation mapping (CAM), Grad-GAM



Methodology: Perturbation-based Explanations
qChange the input and observe the effect on the output 
• GNNExplainer on Graphs

• A small subgraph of the input graph that are most influential for target prediction

22
Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks.”, 2019

Computation graph (Soft) Mask matrix



Methodology: Perturbation-based Explanations
qChange the input and observe the effect on the output 
• GNNExplainer on Graphs

• A small subgraph of the input graph that are most influential for target prediction

23
Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks.”, 2019

Table 1: Illustration of synthetic datasets (refer to “Synthetic datasets” for details) together with performance
evaluation of GNNEXPLAINER and alternative baseline explainability approaches.
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Figure 3: Evaluation of single-instance explanations. A-B. Shown are exemplar explanation subgraphs for node
classification task on four synthetic datasets. Each method provides explanation for the red node’s prediction.

importance, since a 1-hop neighbor of a node can also be a 2-hop neighbor of the same node due to
cycles. Each edge’s importance is thus computed as the average attention weight across all layers.
Setup and implementation details. For each dataset, we first train a single GNN for each dataset,
and use GRAD and GNNEXPLAINER to explain the predictions made by the GNN. Note that
the ATT baseline requires using a graph attention architecture like GAT [33]. We thus train a
separate GAT model on the same dataset and use the learned edge attention weights for explanation.
Hyperparameters KM ,KF control the size of subgraph and feature explanations respectively, which
is informed by prior knowledge about the dataset. For synthetic datasets, we set KM to be the
size of ground truth. On real-world datasets, we set KM = 10. We set KF = 5 for all datasets.
We further fix our weight regularization hyperparameters across all node and graph classification
experiments. We refer readers to the Appendix for more training details (Code and datasets are
available at https://github.com/RexYing/gnn-model-explainer).
Results. We investigate questions: Does GNNEXPLAINER provide sensible explanations? How
do explanations compare to the ground-truth knowledge? How does GNNEXPLAINER perform on
various graph-based prediction tasks? Can it explain predictions made by different GNNs?
1) Quantitative analyses. Results on node classification datasets are shown in Table 1. We have
ground-truth explanations for synthetic datasets and we use them to calculate explanation accuracy for
all explanation methods. Specifically, we formalize the explanation problem as a binary classification
task, where edges in the ground-truth explanation are treated as labels and importance weights given
by explainability method are viewed as prediction scores. A better explainability method predicts
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Figure 4: Evaluation of single-instance explanations. A-B. Shown are exemplar explanation subgraphs for graph
classification task on two datasets, MUTAG and REDDIT-BINARY.
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importance, since a 1-hop neighbor of a node can also be a 2-hop neighbor of the same node due to
cycles. Each edge’s importance is thus computed as the average attention weight across all layers.
Setup and implementation details. For each dataset, we first train a single GNN for each dataset,
and use GRAD and GNNEXPLAINER to explain the predictions made by the GNN. Note that
the ATT baseline requires using a graph attention architecture like GAT [33]. We thus train a
separate GAT model on the same dataset and use the learned edge attention weights for explanation.
Hyperparameters KM ,KF control the size of subgraph and feature explanations respectively, which
is informed by prior knowledge about the dataset. For synthetic datasets, we set KM to be the
size of ground truth. On real-world datasets, we set KM = 10. We set KF = 5 for all datasets.
We further fix our weight regularization hyperparameters across all node and graph classification
experiments. We refer readers to the Appendix for more training details (Code and datasets are
available at https://github.com/RexYing/gnn-model-explainer).
Results. We investigate questions: Does GNNEXPLAINER provide sensible explanations? How
do explanations compare to the ground-truth knowledge? How does GNNEXPLAINER perform on
various graph-based prediction tasks? Can it explain predictions made by different GNNs?
1) Quantitative analyses. Results on node classification datasets are shown in Table 1. We have
ground-truth explanations for synthetic datasets and we use them to calculate explanation accuracy for
all explanation methods. Specifically, we formalize the explanation problem as a binary classification
task, where edges in the ground-truth explanation are treated as labels and importance weights given
by explainability method are viewed as prediction scores. A better explainability method predicts
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Molecular (atoms: hydrogen/carbon and bonds)



Scope of Explanation
q Provide an explanation only for a specific instance or for the 

whole model

qLocal Explanations
• Explain a specific instance

qGlobal Explanations
• Explain the whole model or a class

24



Scope: Local Explanations
qExplain a specific instance
• Image-Specific Saliency Map 

25

Figure 2: Image-specific class saliency maps for the top-1 predicted class in ILSVRC-2013

test images. The maps were extracted using a single back-propagation pass through a classification
ConvNet. No additional annotation (except for the image labels) was used in training.

5

Karen Simonyan, et al. “Deep inside convolutional networks: Visualising image classification models and saliency maps.”, 2013

“Why is a given image classified as a monkey?” 



Scope: Global Explanations
qExplain the whole model or a class
• XGNN: Model/Global-level Explanations on Graphs
• Explain what graph patterns lead to a certain prediction (e.g., motifs) 

26
Yuan, Hao, et al. "XGNN: Towards Model-Level Explanations of Graph Neural Networks.”, 2020 
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Scope: Global Explanations

Yuan, Hao, et al. "XGNN: Towards Model-Level Explanations of Graph Neural Networks.”, 2020 

XGNN: Model/Global-level Explanations on Graphs
MUTAG (molecular: atoms/bonds)

Non-mutagenic 

Mutagenic 



Counterfactual Explanations
q Causal situation: “If X had not occurred, Y would not have occurred”.

28
Hendricks, Lisa Anne, et al. “Generating Counterfactual Explanations with Natural Language.”, 2018 
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Recommender Systems

30
Ma, Weizhi, et al. " Jointly Learning Explainable Rules for Recommendation with Knowledge Graph.”, 2019 

Explanations: Frequently Buy together, Also view, Buy after view,  and Also buy, etc.



Natural Language Processing (NLP)

31
Ribeiro, Marco Tulio, et al. "" Why should i trust you?" Explaining the predictions of any classifier.”, 2016.



Outline
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Surveys
q Doshi-Velez, Finale, et al. "Towards a rigorous science of interpretable machine learning.”, 2017. 

q Guidotti, Riccardo, et al. "A survey of methods for explaining black box models.”, 2018.

q Du, Mengnan, et al. "Techniques for interpretable machine learning.”, 2019.

q Belle, Vaishak, et al. “Principles and practice of explainable machine learning.”, 2020

q Miller, Tim. “Explanation in artificial intelligence: Insights from the social sciences.”, 2019

q Molnar, Christoph. “Interpretable machine learning.”, 2020

q Yuan, Hao, et al.“Explainability in Graph Neural Networks: A Taxonomic Survey.”, 2020

q Arrieta, Alejandro Barredo, et al. “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, 
opportunities and challenges toward responsible AI.”,, 2020

q Linardatos, Pantelis, et al. “Explainable ai: A review of machine learning interpretability 
methods.”, 2021

q …

33
Liu, Haochen, et al. "Trustworthy AI: A Computational Perspective." , 2021.



Tools

34

• https://aix360.mybluemix.netAIX360

• https://github.com/interpretml/interpretInterpretML

• https://github.com/marcoancona/DeepExplainDeepExplain

• https://github.com/divelab/DIGDIG for graph deep 
learning research

Liu, Haochen, et al. "Trustworthy AI: A Computational Perspective." , 2021.



Future Directions

q Security of explainable AI

q Evaluation methodologies

q Knowledge to target model: from white-box to black-box

35


