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Background

• Deep Recommender Systems
• Goal: provide a personalized ranked list of items to users 

User Items

Recommender 
Systems

Deep Neural Networks-based
（e.g., MLP, RNN, GNN, etc.)



Background

• Attacks in Recommender Systems
• Data Poisoning Attacks: promote/demote a set of item 



Background

• Black-box attacks vs. White/grey-box attacks
• No knowledge vs. full/partial knowledge
• Practical (privacy and security concerns)

Security/Privacy 
guarantees



Background

• Challenges in existing black-box attacking methods
• PoisonRec[1]: massive item sets 

• CopyAttack[2]: lack of cross-domain knowledge 

[1] An Adaptive Data Poisoning Framework for Attacking Black-box Recommender Systems (ICDE’20)
[2] Attacking Black-box Recommendations via Copying Cross-domain User Profiles (ICDE’21)

PoisonRec

Massive item set

CopyAttack

Inject

Inject
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Background

• Side-information: Knowledge Graph (KG)
• Rich auxiliary knowledge: relations among items and real-world entities
• The underlying relationships between Target items and other items

Target item



Motivation

• Challenges in existing black-box attacking methods
• PoisonRec[1]: massive item sets 

• CopyAttack[2]: lack of cross-domain knowledge 

• Employs the KG to enhance the generation of fake user profiles from 
the massive item sets 



Background

• Problem Statement
• User 𝑈 = {𝑢!, ⋯ , 𝑢"}
• Item 𝑉 = {𝑣!, ⋯ , 𝑣#}
• User-item Interactions Y
• KG 𝒢 = 𝒱,ℛ , entity−relation−entity triples (𝑝,𝑟,𝑞)

• E.g., (Avatar, film.director, James Cameron)

• Goal: promote a target item 𝑣∗ ∈ 𝑉
• Method: Inject fake user profiles 𝑃" = {𝑣#, ⋯ , 𝑣"$%}
• 𝑈$ = 𝑈 ∪ 𝑈% where 𝑈% = {𝑢"&'}'(!) is a set of fake users
• Polluted interaction matrix 𝑌$



Background

• Challenges in existing black-box attacking methods
• PoisonRec[1]: massive item sets 

• CopyAttack[2]: lack of cross-domain knowledge 

• Employs the KG to enhance the generation of fake user profiles from 
the massive item sets 

• Black-box Setting
• Reinforcement learning – Query Feedback (Reward)



KGAttack - Attacking RL Environment

• State 𝒔𝒕
• Fake user profile 𝑃* at time 𝑡 (representations 𝑥* )

• Action 𝒂𝒕
• Anchor item 𝑎*+#,-./ item candidates pool 𝐶*.

• Picks an item 𝑎*'*0" from 𝐶*

• Reward 𝑹
• Hit ratio of target item on spy users 

𝒂𝒕𝒂𝒏𝒄𝒉𝒐𝒓 𝒂𝒕𝒊𝒕𝒆𝒎𝑪𝒕

Agent

Inject



KGAttack – Framework Overview

• (a): Using KG to enhance the representation of state. 



KGAttack - Knowledge-enhanced State Representation Learning

• Encode state 𝑠* as representation 𝑥*
• Item Initialization (TransE[3]).

[3] Translating embeddings for modeling multi-relational data. NeurIPS 2013 (2013) 



KGAttack - Knowledge-enhanced State Representation Learning

• Encode state 𝑠* as representation 𝑥*

• Item Representation (GNN).

[3] Translating embeddings for modeling multi-relational data. NeurIPS 2013 (2013) 



KGAttack - Knowledge-enhanced State Representation Learning

• Encode state 𝑠* as representation 𝑥*

• State Representation Learning. 

• RNN with a gated recurrent unit (GRU) 

[3] Translating embeddings for modeling multi-relational data. NeurIPS 2013 (2013) 



KGAttack – Framework Overview

(b): Using KG to localize relevant item candidates



KGAttack - Knowledge-enhanced Candidate Selection

• Reduce the massive action 
space 
• H-hop relevant entities of 

anchor item

• Collect items candidates 



KGAttack – Framework Overview

• (c): RL agent, generate user profiles



KGAttack – Hierarchical Policy Networks

• Generate fake user profiles sequentially
• Anchor Item Selection 

• Item Picking 



KGAttack – Hierarchical Policy Networks

• Anchor item Selection:
• Exploitation: Target item 

• Exploration: Select by Policy network

Exploration (1- 𝜖)

Exploitation  (𝜖)



KGAttack – Framework Overview

(d): Injection attacks and query



KGAttack – Model Training

• First stage: Trajectory generation
• Generate N fake user profile

• Second stage: Policy Networks 
update
• Two actor networks and critic

network are updated



Experiments

• Datasets
• MovieLens-1M, Book-Crossing, Last.FM

• Evaluation Metrics
• HR@K, NDCG@K (K=10, 20)

• Baselines
• Traditional methods: RandomAttack, TargetAttack, TargetAttack-KG
• RL-based methods: PoisonRec, PoisonRec-KG
• KGAttack variants: KGAttack-Target, KGAttack-Seq



Experiments – Overall Performance (Pinsage)

• DRL-based attacking methods
• KGAttack
• Hierarchical policy networks

Q1: How effective/evasive is KGAttack in evasion attack tasks ?



Experiments – Overall Performance (KGCN/NeuMF)

• KG-incorporated methods on KGCN. 
• KGAttack almost beat all baselines on these two target models 

Q2: How effective/evasive is KGAttack in poison attack tasks ?



Experiments – Ablation Study

• KGAttack (-KGE) / (-GNN) vs. KGAttack
• KGAttack (-Relevant) vs. KGAttack
• KGAttack (-HPN) vs. KGAttack

Q3: How effective is each component in KGAttack?



Experiments – Parameter Analysis

• Prefers selecting anchor item via hierarchical policy networks 

• Encouraging the target item as the anchor item excessively will degrade the 
attacking performance

Q4: How anchor ratio 𝜖 affects performance?



Conclusions

• Propose a knowledge-enhanced attacking framework for black-
box recommender systems (KGAttack)

• Leverage knowledge graph (KG) to enhance the generation of fake user 
profiles
• In KGAttack, the knowledge graph can be seamlessly integrated into 

hierarchical policy networks to effectively perform adversarial attacks 



Thank You

Jingfan Chen: jingfan.chen@smail.nju.edu.cn

Please see my homepage for more details:

https://cjfcsjt.github.io
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