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§ Advantages
§ Feature representations of users and items
§ Non-linear relationships between users and items

§ Typical architecture
§ Embedding layer
§ Inference layer

§ Well-designed loss functions
§ Item rating prediction (regression)
§ CTR prediction (binary classification)

Deep Recommender Systems
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Existing Optimization Methods
§ Predefined and fixed loss functions

§ E.g., MAE or MSE loss for regression tasks

§ The gradients generated from a given loss function are optimal?

MAE MSE
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Existing Optimization Methods
§ Fusing multiple loss functions in a weighted sum manner

§ E.g., Panoptic FPN leverages a grid search to find better loss weights [1]
§ E.g., UPSNet manually investigates the weights of loss functions [2]

[1] Panoptic feature pyramid networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 
[2] Upsnet: A unified panoptic segmentation network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
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Existing Optimization Methods
§ Fusing multiple loss functions in a weighted sum manner

§ E.g., Panoptic FPN leverages a grid search to find better loss weights [1]
§ E.g., UPSNet manually investigates the weights of loss functions [2]

§ Disadvantages
§ Exhaustively or manually searching for loss weights à Costly in computation and time
§ Unified and static loss weights à Overlooking the different convergence behaviors
§ Retraining loss weights is always desired à Bad generalizability and transferability

[1] Panoptic feature pyramid networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 
[2] Upsnet: A unified panoptic segmentation network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
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§ Forward-propagation step
§ Generating predictions
§ Calculating candidate losses
§ Calculating probabilities
§ Calculating the overall loss
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§ Backward-propagation step
§ Updating the main DRS network parameters upon the training data examples 
§ Optimizing the controller network parameters based on validation data examples 

AutoLoss Framework
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Experimental Settings
§ Two recommendation datasets/tasks

§ Criteo: binary classification
§ ML-20m: multiclass classification

§ Two deep recommendation models
§ DeepFM and IPNN

(a) DeepFM Architecture (b) IPNN Architecture
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§ Transferability among DRS models
§ DeepFM à NFM and AutoInt
§ 𝐶𝐸: cross-entropy loss
§ 𝑆𝐿𝐹: SLF controller from DeepFM
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§ Fastest training speed
§ AutoLoss can generate the most appropriate gradients to update DRS, which increases the 

optimization efficiency
§ We update the controller once after every 7 times DRS is updated, which not only reduces 

the training time (∼ 60%) with fewer computations, but also enhances the performance

Efficiency Study 
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Conclusion
§ We propose an end-to-end framework, AutoLoss, which can automatically select 

the proper loss functions for training DRS frameworks
§ Better recommendation performance and training efficiency 

§ A novel controller network is developed to adaptively adjust the probabilities 
over multiple loss functions according to different data examples’ convergence 
behaviors
§ Enhancing the model generalizability between different DRS frameworks and datasets


