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Deep Recommender Systems
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Existing Optimization Methods

= Predefined and fixed loss functions
= E.g., MAE or MSE loss for regression tasks
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Existing Optimization Methods

= Predefined and fixed loss functions
= E.g., MAE or MSE loss for regression tasks

= The gradients generated from a given loss function are optimal?
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Existing Optimization Methods

= Fusing multiple loss functions in a weighted sum manner
= E.g., Panoptic FPN leverages a grid search to find better loss weights [1]
= E.g., UPSNet manually investigates the weights of loss functions [2]

[1] Panoptic feature pyramid networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
[2] Upsnet: A unified panoptic segmentation network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
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Existing Optimization Methods

= Fusing multiple loss functions in a weighted sum manner
= E.g., Panoptic FPN leverages a grid search to find better loss weights [1]
= E.g., UPSNet manually investigates the weights of loss functions [2]

= Disadvantages
= Exhaustively or manually searching for loss weights > Costly in computation and time
= Unified and static loss weights - Overlooking the different convergence behaviors
= Retraining loss weights is always desired = Bad generalizability and transferability

[1] Panoptic feature pyramid networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
[2] Upsnet: A unified panoptic segmentation network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
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AutolLoss Framework
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AutolLoss Framework
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= Forward-propagation step

= Generating predictions
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AutolLoss Framework
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= Forward-propagation step
= Generating predictions
= Calculating candidate losses
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AutolLoss Framework
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= Forward-propagation step
= Generating predictions
= Calculating candidate losses
= Calculating probabilities
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AutolLoss Framework

DRS Network / - a
I~ I ~ ‘)robabilities Py .
- o ofcfo =g
"
—> I .
I
y I fl ,’I
r :Bm) \ hﬁ | losses &
»‘ N Yy | o
\ by
~

= Forward-propagation step

Generating predictions

Calculating candidate losses

Calculating probabilities

Calculating the overall loss
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AutolLoss Framework

Controller

DRS Network D1
I~ :I?l »\ probabilities P> .
o) -, y-Y -
y V % . ""A“n.\\\
pn . \\\
L2y '

o A s
% : —> Loss L
y fl ,,"l .
@ L ~ h losses (&

V- T g — e

» .

- ’ ‘

P .

= Backward-propagation step

= Updating the main DRS network parameters upon the training data examples
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AutolLoss Framework
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= Backward-propagation step
= Updating the main DRS network parameters upon the training data examples
= Optimizing the controller network parameters based on validation data examples
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Experimental Settings

= Two recommendation datasets/tasks

= Criteo: binary classification Data | Criteo ML-20m
= ML-20m: multiclass classification # Interactions | 45,840,617 | 20,000,263
# Feature Fields 39 2
# Feature Values 1,086,810 165,771
# Behavior click or not | rating 1~5

= Two deep recommendation models
= DeepFM and IPNN
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Overall Performance

. Method
| Dataset ’ Model | Metric ‘ s ‘
| | | Focal KL  Hinge @~ CE  MeLU BOHB DARTS SLF  AutoLoss |
; AUCT | 08046 08042 08049 0.8056 0.8063 0.8065 0.8067 0.8081 0.8092*
Criteo | DeepFM &
Logloss | | 0.4466 04469 0.4463  0.4457 0.4436 04435 0.4433 04426 0.4416
Criteo | mnn | AUCT 08077 08072 08079 08085 0.8090 0.8092 0.8093 0.8098  0.8108"
Logloss | | 04435 0.4437 04432 04428 0.4423 04422 04423 04418 0.4409"
ML-20m | Deeopn | AUCT | 07681 07682  0.7685 07692 | 0.7695 0.7695 0.7696 07705  0.7717"
v Logloss | | 1.2320 12317 12316 12310 12307 1.2305 12305 12299 1.2288"
ML2om | NN | AUCT 07721 07722 07725 07733 | 0.7735 07734 07736 07745  0.7756"
Logloss | | 1.2270 1.2269 12266 12260 12256 1.2257 12255 12249 1.2236"

Focal loss, KL divergence, Hinge loss and cross-entropy (CE) loss

for both classification tasks
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Overall Performance

. Method

| Dataset I Model | Metric ‘ adniand ‘
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Focal loss, KL divergence, Hinge loss and cross-entropy (CE) loss
for both classification tasks

= Fixed weights over loss functions: MeLU (meta-learning), BOHB and DARTS (AutoML)
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Overall Performance

| Dataset l Model | Metric ‘ Methods
| | | | Focal KL Hinge CE MeLU BOHB DARTS SLF [AutoLoss

AUCT 0.8046 0.8042  0.8049 0.8056 0.8063 0.8065 0.8067 0.8081 | 0.8092*
Logloss | | 0.4466 0.4469  0.4463  0.4457 0.4436 0.4435 0.4433 0.4426 || 0.4416"

AUCT 0.8077 0.8072  0.8079  0.8085 0.8090 0.8092 0.8093 0.8098 | 0.8108"
Logloss | | 0.4435 0.4437 0.4432  0.4428 0.4423 0.4422 0.4423 0.4418 | 0.4409"

Criteo | DeepFM

Criteo IPNN

AUCT 0.7681 0.7682  0.7685  0.7692 0.7695 0.7695 0.7696 0.7705 | 0.7717*
Logloss | | 1.2320 1.2317 1.2316 1.2310 1.2307 1.2305 1.2305 1.2299 | 1.2288"

AUCT 0.7721 0.7722  0.7725 0.7733 0.7735 0.7734 0.7736  0.7745 | 0.7756"
Logloss | | 1.2270 1.2269  1.2266  1.2260 1.2256 1.2257 1.2255 1.2249 | 1.2236"

ML-20m | DeepFM

ML-20m | IPNN

2 Focal loss, KL divergence, Hinge loss and cross-entropy (CE) loss
for both classification tasks

= Fixed weights over loss functions: MeLU (meta-learning), BOHB and DARTS (AutoML)

= Data example-wise loss weights: SLF (stochastic loss function)
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Transferability Study

= Transferability among DRS models

DeepFM - NFM and Autolnt

CE: cross-entropy loss

SLF: SLF controller from DeepFM

AL: AutolLoss controller from DeepFM
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Transferability Study
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Efficiency Study
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= Fastest training speed

= Autoloss can generate the most appropriate gradients to update DRS, which increases the
optimization efficiency

= We update the controller once after every 7 times DRS is updated, which not only reduces
the training time (~ 60%) with fewer computations, but also enhances the performance
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Conclusion

= We propose an end-to-end framework, AutoLoss, which can automatically select
the proper loss functions for training DRS frameworks

= Better recommendation performance and training efficiency

= A novel controller network is developed to adaptively adjust the probabilities
over multiple loss functions according to different data examples’ convergence
behaviors

= Enhancing the model generalizability between different DRS frameworks and datasets

ata Science and Engineering Lab



