

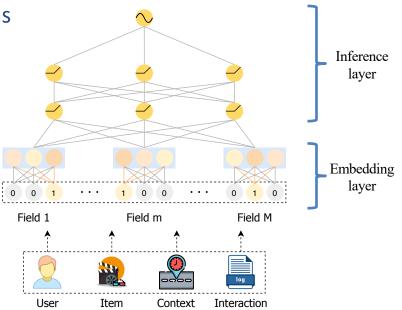
AutoLoss: Automated Loss Function Search in Recommendations

Xiangyu Zhao, Haochen Liu, Wenqi Fan Hui Liu, Jiliang Tang, Chong Wang
1: City University of Hong Kong, 2: Michigan State University
3: The Hong Kong Polytechnic University, 4: Bytedance



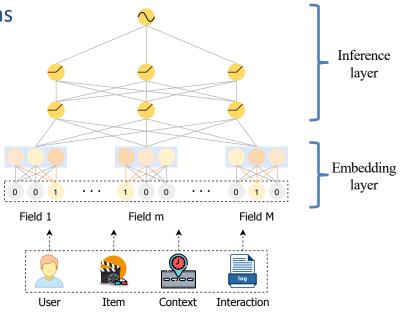
Deep Recommender Systems

- Advantages
 - Feature representations of users and items
 - Non-linear relationships between users and items
- Typical architecture
 - Embedding layer
 - Inference layer

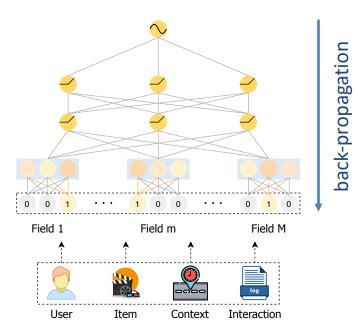


Deep Recommender Systems

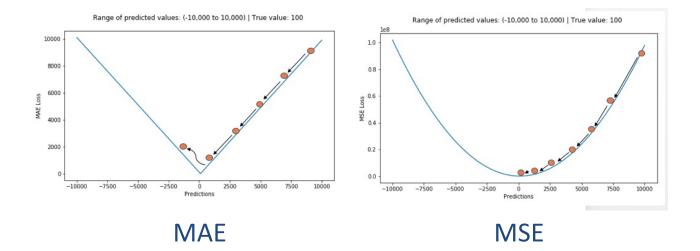
- Advantages
 - Feature representations of users and items
 - Non-linear relationships between users and items
- Typical architecture
 - Embedding layer
 - Inference layer
- Well-designed loss functions
 - Item rating prediction (regression)
 - CTR prediction (binary classification)



- Predefined and fixed loss functions
 - E.g., MAE or MSE loss for regression tasks



- Predefined and fixed loss functions
 - E.g., MAE or MSE loss for regression tasks
- The gradients generated from a given loss function are optimal?

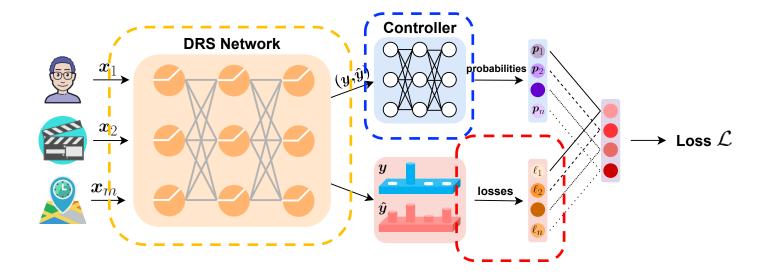


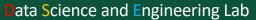
- Fusing multiple loss functions in a weighted sum manner
 - E.g., Panoptic FPN leverages a grid search to find better loss weights [1]
 - E.g., UPSNet manually investigates the weights of loss functions [2]

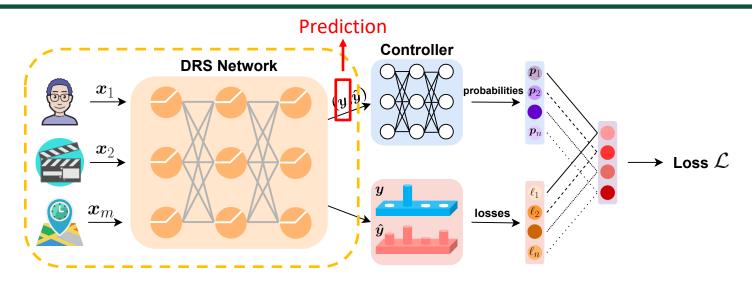
- Fusing multiple loss functions in a weighted sum manner
 - E.g., Panoptic FPN leverages a grid search to find better loss weights [1]
 - E.g., UPSNet manually investigates the weights of loss functions [2]
- Disadvantages
 - Exhaustively or manually searching for loss weights → Costly in computation and time

- Fusing multiple loss functions in a weighted sum manner
 - E.g., Panoptic FPN leverages a grid search to find better loss weights [1]
 - E.g., UPSNet manually investigates the weights of loss functions [2]
- Disadvantages
 - Exhaustively or manually searching for loss weights → Costly in computation and time
 - Unified and static loss weights → Overlooking the different convergence behaviors

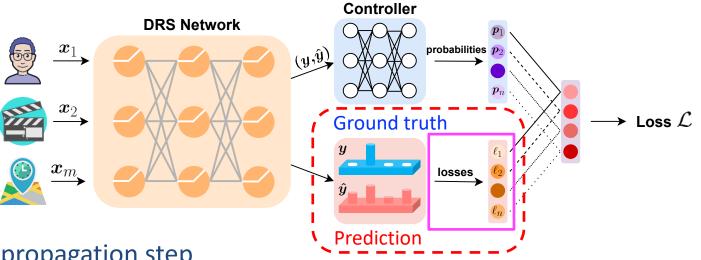
- Fusing multiple loss functions in a weighted sum manner
 - E.g., Panoptic FPN leverages a grid search to find better loss weights [1]
 - E.g., UPSNet manually investigates the weights of loss functions [2]
- Disadvantages
 - Exhaustively or manually searching for loss weights → Costly in computation and time
 - Unified and static loss weights → Overlooking the different convergence behaviors
 - Retraining loss weights is always desired → Bad generalizability and transferability



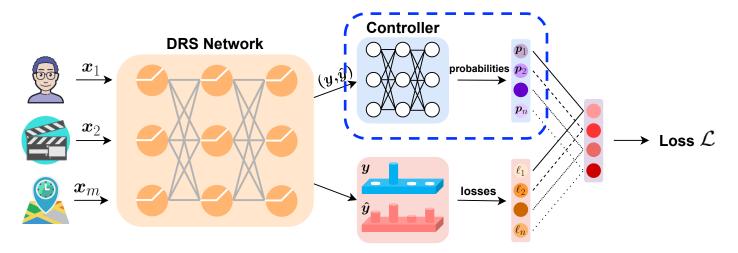




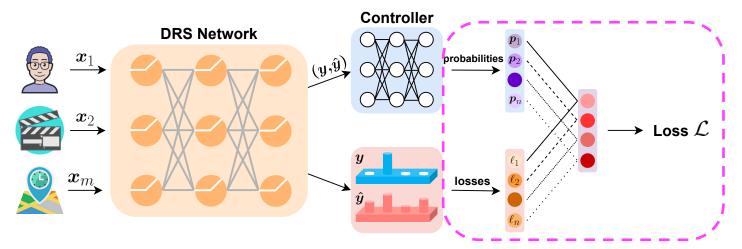
- Forward-propagation step
 - Generating predictions



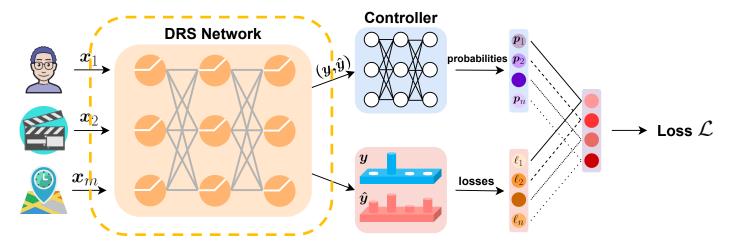
- Forward-propagation step
 - Generating predictions
 - Calculating candidate losses



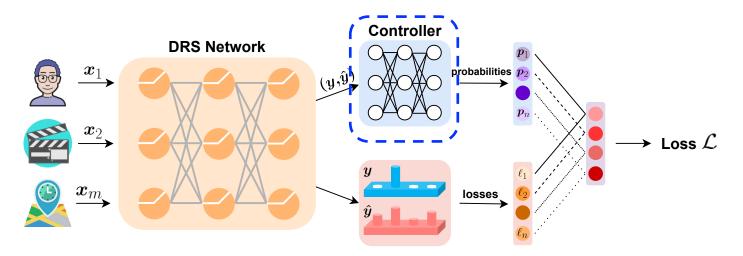
- Forward-propagation step
 - Generating predictions
 - Calculating candidate losses
 - Calculating probabilities



- Forward-propagation step
 - Generating predictions
 - Calculating candidate losses
 - Calculating probabilities
 - Calculating the overall loss



- Backward-propagation step
 - Updating the main DRS network parameters upon the training data examples



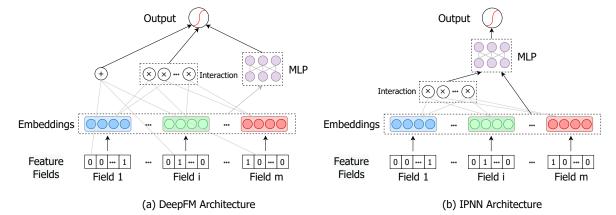
- Backward-propagation step
 - Updating the main DRS network parameters upon the training data examples
 - Optimizing the controller network parameters based on validation data examples

Experimental Settings

- Two recommendation datasets/tasks
 - Criteo: binary classification
 - ML-20m: multiclass classification

Data	Criteo	ML-20m		
# Interactions	45,840,617	20,000,263		
# Feature Fields	39	2		
# Feature Values	1,086,810	165,771		
# Behavior	click or not	rating 1~5		

- Two deep recommendation models
 - DeepFM and IPNN



Overall Performance

Dataset	Model	Metric	Methods								
			Focal	KL	Hinge	CE	MeLU	BOHB	DARTS	SLF	AutoLoss
Criteo	DeepFM	AUC ↑ Logloss ↓	0.8046 0.4466	0.8042 0.4469	0.8049 0.4463	0.8056 0.4457	0.8063 0.4436	0.8065 0.4435	0.8067 0.4433	0.8081 0.4426	0.8092* 0.4416*
Criteo	IPNN	AUC ↑ Logloss ↓	0.8077 0.4435	0.8072 0.4437	0.8079 0.4432	0.8085 0.4428	0.8090 0.4423	0.8092 0.4422	0.8093 0.4423	0.8098 0.4418	0.8108* 0.4409*
ML-20m	DeepFM	AUC ↑ Logloss ↓	0.7681 1.2320	0.7682 1.2317	0.7685 1.2316	0.7692 1.2310	0.7695 1.2307	0.7695 1.2305	0.7696 1.2305	0.7705 1.2299	0.7717* 1.2288*
ML-20m	IPNN	AUC ↑ Logloss ↓	0.7721 1.2270	0.7722 1.2269	0.7725 1.2266	0.7733 1.2260	0.7735 1.2256	0.7734 1.2257	0.7736 1.2255	0.7745 1.2249	0.7756* 1.2236*

 Fixed loss function: Focal loss, KL divergence, Hinge loss and cross-entropy (CE) loss for both classification tasks

Overall Performance

Dataset	Model	el Metric	Methods								
			Focal	KL	Hinge	CE	MeLU	BOHB	DARTS	SLF	AutoLoss
Criteo	DeepFM	AUC↑ Logloss↓	0.8046 0.4466	0.8042 0.4469	0.8049 0.4463	0.8056 0.4457	0.8063 0.4436	0.8065 0.4435	0.8067 0.4433	0.8081 0.4426	0.8092* 0.4416*
Criteo	IPNN	AUC ↑ Logloss ↓	0.8077 0.4435	0.8072 0.4437	0.8079 0.4432	0.8085 0.4428	0.8090 0.4423	0.8092 0.4422	0.8093 0.4423	0.8098 0.4418	0.8108* 0.4409*
ML-20m	DeepFM	AUC↑ Logloss↓	0.7681 1.2320	0.7682 1.2317	0.7685 1.2316	0.7692 1.2310	0.7695 1.2307	0.7695 1.2305	0.7696 1.2305	0.7705 1.2299	0.7717* 1.2288*
ML-20m	IPNN	AUC ↑ Logloss ↓	0.7721 1.2270	0.7722 1.2269	0.7725 1.2266	0.7733 1.2260	0.7735 1.2256	0.7734 1.2257	0.7736 1.2255	0.7745 1.2249	0.7756* 1.2236*

- Fixed loss function: Focal loss, KL divergence, Hinge loss and cross-entropy (CE) loss for both classification tasks
- Fixed weights over loss functions: MeLU (meta-learning), BOHB and DARTS (AutoML)

Dataset	Model	Metric	Methods								
			Focal	KL	Hinge	CE	MeLU	BOHB	DARTS	SLF	AutoLoss
Criteo	DeepFM	AUC ↑ Logloss ↓	0.8046 0.4466	0.8042 0.4469	0.8049 0.4463	0.8056 0.4457	0.8063 0.4436	0.8065 0.4435	0.8067 0.4433	0.8081 0.4426	0.8092* 0.4416*
Criteo	IPNN	AUC ↑ Logloss ↓	0.8077 0.4435	0.8072 0.4437	0.8079 0.4432	0.8085 0.4428	0.8090 0.4423	0.8092 0.4422	0.8093 0.4423	0.8098 0.4418	0.8108* 0.4409*
ML-20m	DeepFM	AUC ↑ Logloss ↓	0.7681 1.2320	0.7682 1.2317	0.7685 1.2316	0.7692 1.2310	0.7695 1.2307	0.7695 1.2305	0.7696 1.2305	0.7705 1.2299	0.7717* 1.2288*
ML-20m	IPNN	AUC ↑ Logloss ↓	0.7721 1.2270	0.7722 1.2269	0.7725 1.2266	0.7733 1.2260	0.7735 1.2256	0.7734 1.2257	0.7736 1.2255	0.7745 1.2249	0.7756* 1.2236*

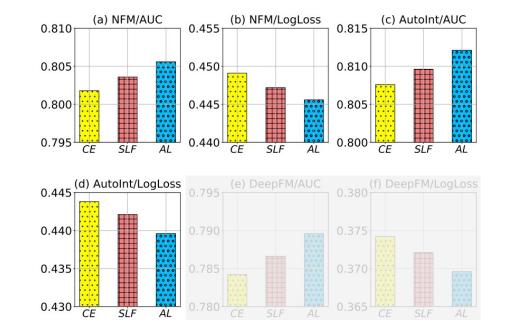
- Fixed loss function: Focal loss, KL divergence, Hinge loss and cross-entropy (CE) loss for both classification tasks
- Fixed weights over loss functions: MeLU (meta-learning), BOHB and DARTS (AutoML)
- Data example-wise loss weights: SLF (stochastic loss function)

Dataset	Model	Metric	Methods								
	linouor		Focal	KL	Hinge	CE	MeLU	BOHB	DARTS	SLF	AutoLoss
Criteo	DeepFM	AUC ↑ Logloss ↓	0.8046 0.4466	0.8042 0.4469	0.8049 0.4463	0.8056 0.4457	0.8063 0.4436	0.8065 0.4435	0.8067 0.4433	0.8081 0.4426	0.8092* 0.4416*
Criteo	IPNN	AUC ↑ Logloss ↓	0.8077 0.4435	0.8072 0.4437	0.8079 0.4432	0.8085 0.4428	0.8090 0.4423	0.8092 0.4422	0.8093 0.4423	0.8098 0.4418	0.8108* 0.4409*
ML-20m	DeepFM	AUC ↑ Logloss ↓	0.7681 1.2320	0.7682 1.2317	0.7685 1.2316	0.7692 1.2310	0.7695 1.2307	0.7695 1.2305	0.7696 1.2305	0.7705 1.2299	0.7717* 1.2288*
ML-20m	IPNN	AUC ↑ Logloss ↓	0.7721 1.2270	0.7722 1.2269	0.7725 1.2266	0.7733 1.2260	0.7735 1.2256	0.7734 1.2257	0.7736 1.2255	0.7745 1.2249	0.7756* 1.2236*

- Fixed loss function: Focal loss, KL divergence, Hinge loss and cross-entropy (CE) loss for both classification tasks
- Fixed weights over loss functions: MeLU (meta-learning), BOHB and DARTS (AutoML)
- Data example-wise loss weights: SLF (stochastic loss function)

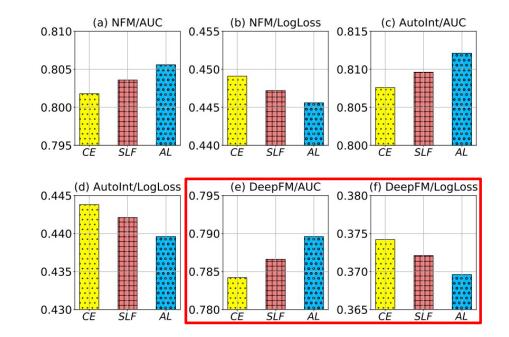
Transferability Study

- Transferability among DRS models
 - DeepFM → NFM and AutoInt
 - CE: cross-entropy loss
 - SLF: SLF controller from DeepFM
 - *AL*: AutoLoss controller from DeepFM
- Transferability among datasets
 - Criteo → Avazu
 - *CE*: cross-entropy loss on Avazu
 - *SLF*: SLF controller from Criteo
 - *AL*: AutoLoss controller from Criteo

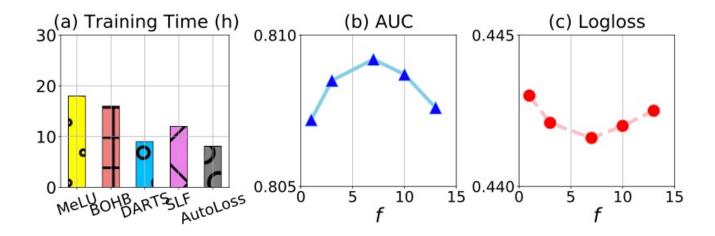


Transferability Study

- Transferability among DRS models
 - DeepFM \rightarrow NFM and AutoInt
 - *CE*: cross-entropy loss
 - *SLF*: SLF controller from DeepFM
 - *AL*: AutoLoss controller from DeepFM
- Transferability among datasets
 - Criteo → Avazu
 - CE: cross-entropy loss on Avazu
 - *SLF*: SLF controller from Criteo
 - *AL*: AutoLoss controller from Criteo



Efficiency Study



Fastest training speed

- AutoLoss can generate the most appropriate gradients to update DRS, which increases the optimization efficiency
- We update the controller once after every 7 times DRS is updated, which not only reduces the training time (~ 60%) with fewer computations, but also enhances the performance

Conclusion

- We propose an end-to-end framework, AutoLoss, which can automatically select the proper loss functions for training DRS frameworks
 - Better recommendation performance and training efficiency
- A novel controller network is developed to adaptively adjust the probabilities over multiple loss functions according to different data examples' convergence behaviors
 - Enhancing the model generalizability between different DRS frameworks and datasets

