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} Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using
neural networks to aggregate information from
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Inductive Representation Learning on Large Graphs, NeulPS, 2017.



} Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using
neural networks to aggregate information from
local neighborhoods [Message Passing].

Model a local
structural information
(neighborhood) of a
node;

Q Node
B

B Node feature
B
|

Inductive Representation Learning on Large Graphs, NeulPS, 2017.
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} Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using
neural networks to aggregate information from
local neighborhoods [Message Passing].

Model a local Aggregation Representation
structural information operation update
(neighborhood) of a
node;

=1 GNNs can naturally integrate node feature and the
topological structure for graph-structured data.

Inductive Representation Learning on Large Graphs, NeulPS, 2017.
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} GNNs-based System is Everywhere

Trustworthy

Entertainment Education 6



) Adversarial Attacks on Deep Learning

Classified as panda Small adversarial noise Classified as gibbon

!

X € X

Find x’ satisfying ||x’ — x|| <A
suchthat C(x") # y



) Adversarial Attacks on GNNs




) GNNs Explainability

From Black-box to
Transparent
How GNNs make decision? .




From Black-box to

) GNNs Explainability

How GNNs make decision? @ -l

GNN model training and predictions Explaning GNN’s predictions

7; = “Basketball” y; = “Sailing”

4 GNNExplainer
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) GNNExplainer as Adversarial Inspector
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) Research Problem

.ﬂ Whether a graph neural network and its explanations can be jointly attacked

.‘ by modifying graphs with malicious desires?

12



) Research Problem
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} Problem Statement

Problem: Given G = (A, X), target (victim) nodes v; C
Vi and specific target label y;, the attacker aims to select

adversarial edges to composite a new graph A which fulfills
the following two goals:

o The added adversarial edges can change the GNN’s predic-
tion to a specific target label: ; = arg max,, fo(A, X)5.s
o The added adversarial edges will not be included in the
subgraph generated by GNNEXPLAINER: A — A ¢ Ag.



} Formulation

Node Classification

I. Two-layer

. GCN model

GNNExplainer

fo(A, X) = softmax(A o(A X W;) Wy)

min Lonn(fo(A, X)) := D £(fo(A, X, i) (1)
v, €V,
-— > ZH o] In(fo(A,X)z))
v, €VE c=1

max MI (Y, (As,XS))

(As,Xs) .
Adversarial mi : s
- — min H(Y|A Ag, X = XS) 4 mlilﬁExplalner(fQ,A,MA,X,’Uz,yz)
(As,Xs) Edges .
== ~ min —ZH c]In fo(As, Xs)s, - —>r11\1&x2]1[yi = Info(A ©a(Ma),X)s,
(A57XS) _ c=1
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) Graph Attack

C
min Low(fo(A, X)u,, 5i) 3= = 3Tl = | In(fo (A, X)5))
c=1
Perturbation HE/H _ HA . AHO < A.

budget:

> Gradient-based attack methods

Discrete property in Graph -> Relax the adjacency matrix A € {0, 1}"*" as
continuous variable.



) GNNExplainer Attack

min > Mj[i, j] - Bli, ] 9)
A v; EN (v;)

where B =117 — I — A. I is an identity matrix, and 117 is

all-ones matrix. 117" — I corresponds to the fully-connected

graph. When ¢ is 0, MY is randomly initialized; while ¢ is
larger than O, M is updated as follows:

M, = Mz_l — nVMt 1£Expla1ner(f07 Mt ' X vuy’b)

C

— max Z I[9; = c|In fo(A © (M4), X)S,

Sophisticated 0 1 T
dependency MA — MA _>‘ T MA
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} Our Proposed GEAttack

Bi-level optimization problem:

mgnﬁGEAttack = Lonn(fo(A, X),, %) + X Y Mili, 5] B[, j.
v; EN (vy)

where M% is randomly initialized when ¢ is O, and for £ > 0, Mf4 can be updated as follows:

MZ = MAt—l — nsz—lﬁExplainer(fe, A, Mz_l, X, 'UIL, @’L)'

* Mimic  the  optimization  process  of = Require high-order gradient computation

Inner GNNExperliner , Outer by the Automatic Differentiation Package
Loop = Maintain the computation graph of these Loop

updates on dependency of adjacency mask
matrix

18



} Our Proposed GEAttack

Algorithm 1 GEAttack

1: Input: perturbation budget: A; step-size and update iterations of GNNEXPLAINER: 7, T'; target
node v;; target label ¢;; graph G = (A, X), and a GNN model: fy.

Output: the adversarial adjacency matrix A.

B =117 —1— A, A = A, and randomly initialize M;

foro=1,2,...,A do // outer loop over A
fort=1,2,...,T do //inner loop over M;;

A L, X
compute P? = VM;—ILExplainer(fea A MY X, v, 9:);

gradient descent: MY, = M, ' — nP?;
end for X
compute the gradient w.r.t. A: Q° = V 3 LoEAstacks
select the edge between node pair (v;,v;) with the maximum element Q°[, j| as the
adversarial edge, and update A[i, j] = 1 and B[, j] = 0;
11: end for

A

12: Return A.

YOI N hH WD
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} Experiment

Table 1: Results with standard deviations (+£std) on three datasets using different attacking algorithms.

Metrics (%) FGA® RNA FGA-T Nettack IG-Attack | FGA-T&E | GEAttack
4 ASR 86.79+0.08 | 55.52+0.08 | 99.56+£0.01 | 99.11+0.01 | 91.54+0.05 | 98.74+0.02 | 100+0.00
E ASR-T - 54.27£0.10 | 99.56+0.01 | 99.11+£0.01 | 91.54+0.05 | 98.74+0.02 | 100=+0.00
&J Precision 13.45£0.01 | 9.96+0.01 | 13.444+0.02 | 10.21+0.01 | 10.21£0.01 | 13.31£0.01 | 9.87+0.02
= Recall 74.55£0.05 | 63.80+£0.05 | 74.55+0.05 | 66.48+0.06 | 65.73+£0.04 | 74.28+0.05 | 64.05+0.07
& F1 21.65+£0.02 | 16.44+0.02 | 21.64+0.02 | 17.08+0.02 | 16.96£0.02 | 21.47+0.02 | 16.49+0.03
© NDCG 47.18+£0.04 | 39.21£0.04 | 46.60+0.04 | 38.45+0.05 | 40.26+0.04 | 47.02+0.05 | 36.11+0.05
ASR 90.54+0.05 | 62.97£0.10 | 100+0.00 100£0.00 | 90.17+0.07 | 99.79+0.01 | 100+0.00
ASR-T - 62.58+0.10 | 100+0.00 100+£0.00 | 90.17+0.07 | 99.79+0.01 | 100+0.00
é Precision 16.02+0.01 | 10.47+0.01 | 16.084+0.01 | 12.78+0.01 | 13.47+0.03 | 15.95+0.01 | 12.21+£0.01
8 Recall 72.65+0.05 | 55.40+£0.07 | 72.75+£0.05 | 63.83+0.06 | 67.66+0.04 | 72.45+0.05 | 65.03+0.06
F1 25.30+0.02 | 17.00+0.02 | 25.38+0.02 | 20.64+0.02 | 21.794+0.04 | 25.21+0.02 | 20.06+0.02
NDCG 43.15+0.04 | 34.16£0.05 | 43.411+0.04 | 36.471+0.04 | 38.05+0.05 | 43.46+0.04 | 35.60+0.03
ASR 67.50£0.07 | 63.66+0.13 | 100+0.00 | 98.00+£0.03 | 98.82+0.02 | 100+0.00 100+0.00
ASR-T - 63.66+0.13 | 100+0.00 | 98.00+0.03 | 98.82+0.02 | 100+0.00 100+0.00
% Precision 11.57+£0.05 | 9.26+0.01 | 11.88+0.05 | 12.98+0.03 | 11.694+0.05 | 11.31+0.05 | 9.61+£0.02
< Recall 38.21+0.12 | 34.05+0.05 | 38.34+0.12 | 43.67£0.09 | 44.49+0.14 | 37.90+0.12 | 38.08+0.08
F1 14.162£0.05 | 12.754+0.02 | 14.354+0.05 | 17.61+0.04 | 16.61+0.07 | 13.91+£0.05 | 14.03+0.03
NDCG 38.58+0.14 | 36.68+0.10 | 38.17£0.13 | 46.90+0.09 | 41.23+0.13 | 38.07+0.13 | 24.431+0.06

3 FGA cannot evaluate ASR-T metric where the specific target label are not available.

GEAttack works consistently comparable to or outperform other strong GNN
attacking methodes.
GEAttack consistently outperforms other methods when attacking the

GNNExplainer, except for the RNA method.
Both GNNs model and its explanations are vulnerable to adversarial attacks




} Conclusion

GNNExplainer (as Adversarial Inspector) can be utilized to understand and inspect
the problematic outputs from adversarially perturbed graph data.

A new attacking problem: jointly attack a graph neural network method and its
explanations.

Our proposed algorithm GEAttack successfully resolves the dilemma between
attacking GNN and its explanations by exploiting their vulnerabilities
simultaneously.

The very first study: investigate interactions between adversarial attacks and
explainability for the trustworthy GNNs.
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