

Jointly Attacking Graph Neural Network and its Explanations

Wenqi Fan¹*, Han Xu²*, Wei Jin², Xiaorui Liu³, Xianfeng Tang⁴, Suhang Wang⁵, Qing Li¹, Jiliang Tang², Jianping Wang⁶, and Charu Aggarwal⁷

¹The Hong Kong Polytechnic University, ²Michigan State University, ³North Carolina State University, ⁴Amazon, ⁵The Pennsylvania State University, ⁶City University of Hong Kong, ⁷IBM T.J. Watson

Data as Graphs

Social Graphs

Web Graphs

Transportation Graphs

Brain Graphs

Gene Graphs

Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using neural networks to aggregate information from local neighborhoods [Message Passing].

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.

Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using neural networks to aggregate information from local neighborhoods [Message Passing].

Model a local structural information (neighborhood) of a node;

Inductive Representation Learning on Large Graphs, NeuIPS, 2017.

Graph Neural Networks (GNNs)

Key idea: Generate node embeddings via using neural networks to aggregate information from local neighborhoods [Message Passing].

node;

Aggregation operation

Representation update

GNNs can naturally integrate node feature and the topological structure for graph-structured data.

GNNs-based System is Everywhere

Business

I

Entertainment

Education

Adversarial Attacks on Deep Learning

Adversarial Attacks on GNNs

GNNs Explainability

How GNNs make decision?

From Black-box to "Transparent"

GNNs Explainability

How GNNs make decision?

From Black-box to "Transparent"

GNNExplainer as Adversarial Inspector

GNNExplainer can act as an inspection tool and have the potential to detect the adversarial perturbations for graphs.

Research Problem

Whether a graph neural network and its explanations can be jointly attacked by modifying graphs with malicious desires?

Research Problem

Adversarial attacks and the explanations for prediction made by a GNN model.

Problem Statement

Problem: Given $G = (\mathbf{A}, \mathbf{X})$, target (victim) nodes $v_i \subseteq V_t$ and specific target label \hat{y}_i , the attacker aims to select adversarial edges to composite a new graph $\hat{\mathbf{A}}$ which fulfills the following two goals:

- The added adversarial edges can change the GNN's prediction to a specific target label: $\hat{y}_i = \arg \max_c f_{\theta}(\hat{\mathbf{A}}, \mathbf{X})_{v_i}^c$;
- The added adversarial edges will not be included in the subgraph generated by GNNEXPLAINER: $\hat{\mathbf{A}} \mathbf{A} \notin \mathbf{A}_S$.

Formulation

Node Classification

Two-layer GCN model

$$\begin{split} f_{\theta}(\mathbf{A}, \mathbf{X}) &= \operatorname{softmax} \big(\tilde{\mathbf{A}} \, \sigma \big(\tilde{\mathbf{A}} \, \mathbf{X} \, \mathbf{W}_{1} \big) \, \mathbf{W}_{2} \big) \\ \min_{\theta} \, \mathcal{L}_{\text{GNN}}(f_{\theta}(\mathbf{A}, \mathbf{X})) &:= \sum_{v_{i} \in V_{L}} \ell \left(f_{\theta}(\mathbf{A}, \mathbf{X})_{v_{i}}, y_{i} \right) \\ &= -\sum_{v_{i} \in V_{L}} \sum_{c=1}^{C} \mathbb{I}[y_{i} = c] \ln(f_{\theta}(\hat{\mathbf{A}}, \mathbf{X})_{v_{i}}^{c}) \end{split}$$

GNNExplainer

$$\begin{bmatrix}
\max_{(\mathbf{A}_{S}, \mathbf{X}_{S})} MI(Y, (\mathbf{A}_{S}, \mathbf{X}_{S})) \\
\rightarrow \min_{(\mathbf{A}_{S}, \mathbf{X}_{S})} H(Y|\mathbf{A} = \mathbf{A}_{S}, \mathbf{X} = \mathbf{X}_{S}) \\
\approx \min_{(\mathbf{A}_{S}, \mathbf{X}_{S})} - \sum_{c=1}^{C} \mathbb{I}[\hat{y}_{i} = c] \ln f_{\theta}(\mathbf{A}_{S}, \mathbf{X}_{S})_{v_{i}}^{c}
\end{bmatrix}$$
Adversarial
Edges
$$\begin{bmatrix}
\min_{\mathbf{A}_{S}} \mathcal{L}_{\text{Explainer}}(f_{\theta}, \mathbf{A}, \mathbf{M}_{A}, \mathbf{X}, v_{i}, \hat{y}_{i}) \\
\rightarrow \max_{\mathbf{M}_{A}} \sum_{c=1}^{C} \mathbb{I}[\hat{y}_{i} = c] \ln f_{\theta}(\mathbf{A} \odot \sigma(\mathbf{M}_{A}), \mathbf{X})_{v_{i}}^{c}$$

Graph Attack

$$\begin{split} \min_{\hat{\mathbf{A}}} \mathcal{L}_{\text{GNN}}(f_{\theta}(\hat{\mathbf{A}}, \mathbf{X})_{v_{i}}, \hat{y}_{i}) &:= -\sum_{c=1}^{C} \mathbb{I}[\hat{y}_{i} = c] \ln(f_{\theta}(\hat{\mathbf{A}}, \mathbf{X})_{v_{i}}^{c}) \\ \\ & \text{Perturbation} \\ & \text{budget:} } \|\mathbf{E}'\| = \|\hat{\mathbf{A}} - \mathbf{A}\|_{0} \leq \Delta. \end{split}$$

Gradient-based attack methods

Discrete property in Graph -> Relax the adjacency matrix $A \in \{0, 1\}^{n \times n}$ as continuous variable.

GNNExplainer Attack

$$\min_{\hat{\mathbf{A}}} \sum_{v_j \in \mathcal{N}(v_i)} \mathbf{M}_A^T[i,j] \cdot \mathbf{B}[i,j]$$
(9)

where $\mathbf{B} = \mathbf{1}\mathbf{1}^T - \mathbf{I} - \mathbf{A}$. I is an identity matrix, and $\mathbf{1}\mathbf{1}^T$ is all-ones matrix. $\mathbf{1}\mathbf{1}^T - \mathbf{I}$ corresponds to the fully-connected graph. When t is 0, \mathbf{M}_A^0 is randomly initialized; while t is larger than 0, \mathbf{M}_A^t is updated as follows:

$$\mathbf{M}_{A}^{t} = \mathbf{M}_{A}^{t-1} - \eta \nabla_{\mathbf{M}_{A}^{t-1}} \mathcal{L}_{\text{Explainer}}(f_{\theta}, \hat{\mathbf{A}}, \mathbf{M}_{A}^{t-1}, \mathbf{X}, v_{i}, \hat{y}_{i}).$$
$$\rightarrow \max_{\mathbf{M}_{A}} \sum_{c=1}^{C} \mathbb{I}[\hat{y}_{i} = c] \ln f_{\theta}(\mathbf{A} \odot \sigma(\mathbf{M}_{A}), \mathbf{X})_{v_{i}}^{c}$$

Sophisticated dependency

$$\mathbf{M}_A^0 \to \mathbf{M}_A^1 \to \cdots \to \mathbf{M}_A^T$$

Our Proposed GEAttack

Bi-level optimization problem:

$$\min_{\hat{\mathbf{A}}} \mathcal{L}_{\text{GEAttack}} := \mathcal{L}_{\text{GNN}}(f_{\theta}(\hat{\mathbf{A}}, \mathbf{X})_{v_{i}}, \hat{y}_{i}) + \lambda \sum_{v_{j} \in \mathcal{N}(v_{i})} \mathbf{M}_{A}^{T}[i, j] \cdot \mathbf{B}[i, j].$$

where \mathbf{M}_A^0 is randomly initialized when t is 0, and for t > 0, \mathbf{M}_A^t can be updated as follows:

$$\mathbf{M}_{A}^{t} = \mathbf{M}_{A^{t-1}} - \eta \nabla_{\mathbf{M}_{A}^{t-1}} \mathcal{L}_{\text{Explainer}}(f_{\theta}, \hat{\mathbf{A}}, \mathbf{M}_{A}^{t-1}, \mathbf{X}, v_{i}, \hat{y}_{i}).$$

Inner Loop

- Mimic the optimization process of GNNExperliner
- Maintain the computation graph of these updates on dependency of adjacency mask matrix

Outer Loop Require high-order gradient computation by the Automatic Differentiation Package

Our Proposed GEAttack

Algorithm 1 GEAttack

- 1: Input: perturbation budget: Δ ; step-size and update iterations of GNNEXPLAINER: η , T; target node v_i ; target label \hat{y}_i ; graph $G = (\mathbf{A}, \mathbf{X})$, and a GNN model: f_{θ} .
- 2: **Output**: the adversarial adjacency matrix $\hat{\mathbf{A}}$.
- 3: $\mathbf{B} = \mathbf{1}\mathbf{1}^T \mathbf{I} \mathbf{A}$, $\hat{\mathbf{A}} = \mathbf{A}$, and randomly initialize \mathbf{M}_A^0 ;

4: for
$$o = 1, 2, ..., \Delta$$
 do // outer loop over $\hat{\mathbf{A}}$;

- 5: for t = 1, 2, ..., T do // inner loop over \mathbf{M}_A^t ;
- 6: compute $\mathbf{P}^{t} = \nabla_{\mathbf{M}_{A}^{t-1}} \mathcal{L}_{\text{Explainer}}(f_{\theta}, \hat{\mathbf{A}}, \mathbf{M}_{A}^{t-1}, \mathbf{X}, v_{i}, \hat{y}_{i});$

7: gradient descent:
$$\mathbf{M}_{A}^{t} = \mathbf{M}_{A}^{t-1} - \eta \mathbf{P}^{t};$$

- 8: end for
- 9: compute the gradient w.r.t. $\hat{\mathbf{A}}$: $\mathbf{Q}^{o} = \nabla_{\hat{\mathbf{A}}} \mathcal{L}_{\text{GEAttack}}$;
- 10: select the edge between node pair (v_i, v_j) with the maximum element $\mathbf{Q}^o[i, j]$ as the adversarial edge, and update $\hat{\mathbf{A}}[i, j] = 1$ and $\mathbf{B}[i, j] = 0$;
- 11: **end for**
- 12: **Return Â**.

Experiment

Table 1: Results with standard deviations	$(\pm std)$ on three	datasets using d	lifferent attacking algorithms.
---	----------------------	------------------	---------------------------------

	Metrics (%)	FGA ³	RNA	FGA-T	Nettack	IG-Attack	FGA-T&E	GEAttack
CITERSEER	ASR	86.79±0.08	$55.52{\pm}0.08$	99.56±0.01	99.11±0.01	91.54±0.05	98.74±0.02	$100{\pm}0.00$
	ASR-T	-	54.27 ± 0.10	99.56±0.01	99.11±0.01	$91.54{\pm}0.05$	98.74 ± 0.02	$100{\pm}0.00$
	Precision	13.45 ± 0.01	9.96±0.01	13.44 ± 0.02	10.21 ± 0.01	10.21 ± 0.01	13.31 ± 0.01	9.87±0.02
	Recall	74.55 ± 0.05	63.80±0.05	74.55 ± 0.05	66.48 ± 0.06	65.73±0.04	$74.28 {\pm} 0.05$	64.05 ± 0.07
	F1	21.65 ± 0.02	$16.44{\pm}0.02$	21.64 ± 0.02	17.08 ± 0.02	16.96 ± 0.02	21.47 ± 0.02	16.49 ± 0.03
	NDCG	47.18 ± 0.04	39.21±0.04	46.60 ± 0.04	38.45 ± 0.05	40.26 ± 0.04	47.02 ± 0.05	36.11±0.05
CORA	ASR	90.54±0.05	62.97±0.10	100±0.00	$100{\pm}0.00$	90.17±0.07	99.79±0.01	$100{\pm}0.00$
	ASR-T	-	$62.58 {\pm} 0.10$	$100{\pm}0.00$	$100{\pm}0.00$	90.17±0.07	99.79±0.01	$100{\pm}0.00$
	Precision	16.02 ± 0.01	$10.47{\pm}0.01$	16.08 ± 0.01	12.78 ± 0.01	13.47 ± 0.03	15.95 ± 0.01	12.21 ± 0.01
	Recall	72.65 ± 0.05	55.40±0.07	72.75 ± 0.05	63.83 ± 0.06	$67.66 {\pm} 0.04$	72.45 ± 0.05	65.03 ± 0.06
	F1	$25.30{\pm}0.02$	$17.00{\pm}0.02$	$25.38 {\pm} 0.02$	20.64 ± 0.02	21.79 ± 0.04	25.21 ± 0.02	20.06 ± 0.02
	NDCG	43.15 ± 0.04	34.16±0.05	43.41 ± 0.04	36.47 ± 0.04	38.05 ± 0.05	43.46 ± 0.04	35.60 ± 0.03
ACM	ASR	67.50 ± 0.07	63.66±0.13	100±0.00	98.00±0.03	$98.82{\pm}0.02$	$100{\pm}0.00$	$100{\pm}0.00$
	ASR-T	-	63.66±0.13	$100{\pm}0.00$	98.00±0.03	$98.82{\pm}0.02$	$100{\pm}0.00$	$100{\pm}0.00$
	Precision	11.57 ± 0.05	9.26±0.01	11.88 ± 0.05	12.98 ± 0.03	11.69 ± 0.05	11.31 ± 0.05	9.61 ± 0.02
	Recall	38.21 ± 0.12	34.05±0.05	38.34 ± 0.12	43.67 ± 0.09	44.49 ± 0.14	37.90 ± 0.12	$38.08 {\pm} 0.08$
	F1	14.16 ± 0.05	12.75 ± 0.02	14.35 ± 0.05	17.61 ± 0.04	16.61 ± 0.07	13.91 ± 0.05	14.03 ± 0.03
	NDCG	38.58 ± 0.14	36.68 ± 0.10	38.17 ± 0.13	46.90 ± 0.09	41.23 ± 0.13	38.07 ± 0.13	24.43±0.06

³ FGA cannot evaluate ASR-T metric where the specific target label are not available.

- GEAttack works consistently comparable to or outperform other strong GNN attacking methods.
 - GEAttack consistently outperforms other methods when attacking the GNNExplainer, except for the RNA method.
 - Both GNNs model and its explanations are vulnerable to adversarial attacks

Conclusion

- GNNExplainer (as Adversarial Inspector) can be utilized to understand and inspect the problematic outputs from adversarially perturbed graph data.
- A new attacking problem: jointly attack a graph neural network method and its explanations.
- Our proposed algorithm GEAttack successfully resolves the dilemma between attacking GNN and its explanations by exploiting their vulnerabilities simultaneously.
- > The very first study: investigate interactions between adversarial attacks and explainability for the trustworthy GNNs.

THANK YOU

Jointly Attacking Graph Neural Network and its Explanations

wenqi.fan@polyu.edu.hk / xuhan1@msu.edu

