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Abstract

Anatomical Therapeutic Chemical (ATC) classification for compounds/drugs plays an important role in drug development and basic
research. However, previous methods depend on interactions extracted from STITCH dataset which may make it depend on lab
experiments. We present a pilot study to explore the possibility of conducting the ATC prediction solely based on the molecular
structures. The motivation is to eliminate the reliance on the costly lab experiments so that the characteristics of a drug can be pre-
assessed for better decision-making and effort-saving before the actual development. To this end, we construct a new benchmark
consisting of 4545 compounds which is with larger scale than the one used in previous study. A light-weight prediction model is
proposed. The model is with better explainability in the sense that it is consists of a straightforward tokenization that extracts and
embeds statistically and physicochemically meaningful tokens, and a deep network backed by a set of pyramid kernels to capture
multi-resolution chemical structural characteristics. Its efficacy has been validated in the experiments where it outperforms the state-
of-the-art methods by 15.53% in accuracy and by 69.66% in terms of efficiency. We make the benchmark dataset, source code and web
server open to ease the reproduction of this study.

Keywords: Anatomical Therapeutic Chemical, ATC Classification, Drug Development, Deep Learning.

Introduction
To identify a given compound into Anatomical Therapeutic Chem-
ical (ATC) system for studying its possible active ingredients, as
well as its therapeutic, pharmacological and chemical proper-
ties, is of great significance to both drug development and basic
research. A commonly adopted ATC system (https://www.whocc.
no/atc/structure_and_principles/) is the one developed by the
World Health Organization (WHO). It is a hierarchical classifica-
tion system that contains five levels of categories, in which the
first level consisting of 14 groups (as shown in Table 1) has been

widely employed to develop methods for ATC classification in the
recent decade.

ATC classification is modeled as a multi-label classification
problem, where a given compound is assigned to one or several
labels indicating its belongingness to the 14 groups. The study
dates back to 2008 when Dunkel et al. [1] proposed the first
method that predicts a single label of a compound using its
physicochemical properties and molecular fingerprints. A great
effort from researchers has been made since then by extending
the problem from the single-label prediction [1–3] to multi-label
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Table 1. Comparison of the two benchmark datasets over the level-1 ATC codes.

ATC-SMILES Chen-2012 [4] Overlapped
Code Anatomical/Pharmacological Group (#drugs) (#drugs) (#drugs)

A Alimentary tract and metabolism 618 540 517
B Blood and blood-forming organs 158 133 126
C Cardiovascular system 625 591 581
D Dermatologicals 455 421 402
G Genito urinary system and sex hormones 285 248 245
H Systemic hormonal preparations, excl. sex hormones and insulins 143 126 123
J Antiinfectives for systemic use 621 521 501
L Antineoplastic and immunomodulating agents 402 232 223
M Musculo-skeletal system 227 208 204
N Nervous system 826 737 724
P Antiparasitic products, insecticides and repellents 138 127 122
R Respiratory system 462 427 419
S Sensory organs 415 390 376
V Various 252 211 204
Total #drugs (counted by virtual drugs defined in [4]) 5627 4912 4767
Total #drugs (counted by the number of identical SMILES sequences) 4545 3883 3785

prediction [4–18], introducing unified benchmark ATC datasets
and evaluation methodology [4, 19], enriching the features with
additional information such as chemical–chemical interactions
[4–11, 13–18, 20, 21], structural similarities [2, 4–7, 9–11, 13–18,
20, 21] and chemical ontology [6, 9, 14, 20], and increasing the
availability with web servers [1, 3, 5, 6, 12, 13].

In Figure 1, we summarize 18 representative works proposed in
recent 10 years to study the evolution. Two trends can be observed.
One is the introduction of deep learning (DL) (e.g. GCN in [15],
CNN in [14, 15]) to take the place of traditional machine learning
methods (e.g. SVM in [2, 20], ML-GKR in [5, 6]). This is not surprising
because DL is considered as a game changer in a wide range of
disciplinary for its power of modeling complex relations. The
other trend is the integration of more and more data sources for
richer representations. For example, the compound descriptions
from Wikipedia are used to construct the word embedding in
[15], and the chemical subgraph similarities are employed in
[5, 9, 13, 15, 16]. The inclusion of new resources can enrich
the representations but may introduce additional issues at the
same time. For example, it increases the complexity of the
representations and models, which requires additional computing
power for reproduction and deployment, not to mention the fact
that some methods even require additional efforts to query exter-
nal tools like Rdkit [22] or web services like SIMCOMP (https://
www.genome.jp/tools/simcomp/) and SUBCOMP (https://www.
genome.jp/tools/subcomp/). More importantly, most of these new
resources are interactions extracted from STITCH [23] which is
a dataset collected from previous clinical trials, physicochemical
experiments and meta analysis. The reliance on STITCH makes
the ATC prediction depend on lab experiments and thus less
feasible and practical for new/unseen drugs/compounds.

In this paper, we present a pilot study to explore the feasibility
of conducting ATC classification with a single resource, which
simplifies both the data acquisition process and the model com-
plexity. More specifically, we generate the representations based
only on molecular structures. We argue that the (conventional)
structural models such as molecular fingerprints and graphs are
incomplete and suffer from information loss. For example, the
molecular fingerprints are generated by simplifying the struc-
ture into binary vectors (e.g. Morgan fingerprint [24], MACCSKeys
[25]). The molecular graphs are generated by transforming the
structures into low-dimensional manifolds in which only the
neighboring information to adjacent atoms are preserved [16].
The high-order or continuous information like the functional

groups or branches are either simplified or ignored in these
models. Therefore, a majority of previous methods are using these
structural information as a supplementary source to the trail-
dependent sources (e.g. STITCH [23]). In this paper, we propose to
model the structure directly to avoid information loss. Specifically,
we use the Simplified Molecular Input Line Entry System (SMILES)
[26] as the data source, and leverage the power of deep learn-
ing to model the complex relations behind. More importantly,
SMILES is used as the sole data source so that the reliance on
lab experiments is eliminated in this study. We demonstrate that
this can achieve comparable (or even superior) performance to
those of the state-of-the-art ATC prediction methods which are
using multiple data sources. The structure-only nature gives the
proposed method the potential to save a significant amount of
expensive resources for drug development or basic research (at
least for that of pre-research steps). Other contributions of this
study include: (1) we collect a new ATC dataset of 4545 com-
pounds/drugs, which can be used either to develop the structure-
only methods in the future, or as the supplementary to exist-
ing benchmarks; (2) the dataset, source code and web server
will be publicly available; and (3) we propose a light-weight DL
model called ATC-CNN which outperforms the state-of-the-art
methods significantly in terms of both effectiveness and effi-
ciency. The representations are straightforward and with better
explainability.

This paper is organized following the five-step guideline in [27]
which is widely adopted in ATC studies [4, 5, 7, 13, 20] as (1) bench-
mark dataset, (2) sample formulation, (3) operation algorithm, (4)
anticipated accuracy and (5) web-server.

Materials and Methods
Benchmark Dataset
We construct a new benchmark ATC-SMILES for ATC classifica-
tion in this study. ATC-SMILES consists of 4545 compounds/drugs
and their SMILES sequences. The benchmark is with the maxi-
mum coverage (81.34%) of KEGG dataset [28] which contains all
5588 known drugs/compounds used for ATC analysis. Prior to
this benchmark, the most widely adopted one is Chen-2012 [4]
which covers 3883 (69.49%) drugs in KEGG and is mainly used
for generating inter-drug correlations (e.g. STITCH [23]). The two
benchmarks are compared in Table 1. ATC-SMILES is designed
to be inclusive to Chen-2012, but there are 2.16% misalignment
due to the mismatching of drug IDs that we will explain soon.
ATC-SMILES can be extended with new drugs much easier than
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Figure 1. Summary of ATC classification methods in the last 10 years.

previous benchmarks as long as the SMILES sequences are avail-
able. Trails/experiments are not a must.

The process for generating ATC-SMILES starts by collecting all
the 5588 drug IDs from KEGG using BioPython [29]. With the IDs as
primary keys, we search the CIDs over PubChem dataset [30] for
SMILES representations of these drugs. We skip drugs when there
are no matched items or corresponding SMILES representations in
PubChem (e.g. KEGG D11856: Empagliflozin, linagliptin and met-
formin hydrochloride). This results in the exclusion of 712 drugs.

Note that we generate the class labels using the same merging
process that has been adopted in previous studies. The process
merges two ATC codes as a single label if they are the same
at level-1, otherwise, considers them as two separated labels.

For example, Ketoprofen is with two ATC codes M01AE03 and
M02AA10, but its level-1 code is consistent as M (i.e. MUSCULO-
SKELETAL SYSTEM). Therefore, Ketoprofen is assigned with a
single label M. Ciprofloxacin is with four ATC codes J01MA02,
S01AE03, S02AA15 and S03AA07. It is assigned with two labels of
J (from J01MA02 for ANTIINFECTIVES FOR SYSTEMIC USE) and
S (by combining S01AE03, S02AA15 and S03AA07 for SENSORY
ORGANS).

Problem Formulation
We follow the common practice of modeling the ATC classifica-
tion as a multi-label learning problem. To ease the introduction,
we formulate it as a general framework before going into details.
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Given a drug/compound representation x ∈ R
d in a d-dimensional

feature space, the goal is to learn a function f : Rd → {0, 1}c that
predicts the labels of x as

ŷ = f (x; θ), (1)

where ŷ ∈ {0, 1}c is a multi-hot binary vector with the ith element
being 1/0 indicating the membership of x to the ith ATC class, and
the c is the number of classes which is a constant of 14 if the first-
level ATC system is adopted. The f is parameterized by a set of p
parameters (θ ∈ R

p).
Given a ground-truth label vector y ∈ {0, 1}c formulated with

the same way as the ŷ, the learning is conducted with the objective
of minimizing the loss L(ŷ, y) between the prediction and the
ground-truth by finding the optimal θ as

θ̂ = arg minθ L(ŷ, y) (2)

= arg minθ L(f (x; θ), y). (3)

Most of the previous studies use the same forms of ŷ and y, but
are different from each other regarding the x, f , θ and L(ŷ, y)

adopted.
In the proposed method, we learn the representations x using

SMILES embedding and implement the f using a light-weight con-
volutional network (CNN) with parameters θ . Binary Cross Entropy
is adopted as the loss L(ŷ, y). Let us breakdown our introduction
into these components.

Tokenization and Representation Generation
We generate the representation x of a drug/compound using its
SMILES sequence. The first step is to split a sequence into a
set of tokens. Although the idea is intuitive, there are only a
few works in literature which have studied this problem. In [31],
Goh et al. propose SMILES2vec in which every character in the
SMILES sequence is considered as a token for embedding, while
in [32], Zhang et al. propose SPVec which breaks a sequence into
tokens using a sliding window of size 3. Tokens generated with
those methods may not be physicochemically meaningful, and
less representative when used for embedding. We address this
issue with an interactive process between a statistical tokenizer
and human experts.

The motivation is to find tokens that are both statistically
meaningful so as to make the modeling effective and efficient,
and physicochemically meaningful to human experts so as to
increase the explainability of the method. As shown Figure 2,
the proposed tokenization process consists of three parts: (1) a
Token Extractor to propose candidate tokens and corresponding
confidence scores; (2) a Domain Knowledge Injector in which human
experts identify physicochemically meaningful tokens from the
highly confident candidates so as to construct a token dictionary
as well as generalize rules for further extraction; and (3) a Sequence
Validator which finds the best partition among all combinations of
tokens for a given sequence.
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Figure 2. Token Generation and Embedding. A dictionary consisting of the best set of tokens is learned jointly by the statistical extractor and human
experts (offline), and used to conduct the tokenization (online). The token embeddings are learned by retraining the Word2vec in an ATC setting.

Token Extractor
The Token Extractor has offline and online states. The offline state
is for learning the token dictionary D by working with the domain
knowledge injector, while the online state is for extracting tokens
for ATC classifications by working the Sequence Validator. We will
introduce the offline state and delay the introduction of online
state until that of the validator.

In offline state, the extractor scans the sequences with a win-
dows size k ranging from 1 to 6. This pools all the candidate tokens
of length k together for dictionary learning. For each candidate,
we calculate the term frequency-inverse document frequency (i.e.
tf-idf [33–35]) and use its average tf-idf over all sequences as the
statistical confidence which also indicates how much information
the candidate carries when compared with other tokens. Denoting
the sequences of ATC-SMILES as a set {s} in which s is the SMILES
sequence for a given drug/compound, the t ∈ s is candidate token
in s, the confidence φ(t) is calculated as

φ(t) =
∑
s∈{s}

tf (t, s) · idf (t, {s})
‖{s}‖ , (4)

tf (t, s) = ρ(t, s)∑
t′∈s ρ(t′, s)

, (5)

idf (t, {s}) = log
( ‖{s}‖

‖{s | t ∈ s}‖
)

, (6)

where ρ(t, s) counts the number of times that a candidate t
appears in the sequence s. Once the confidence scores are cal-
culated, we rank the candidates in a descending order based on
the scores, and select the top-20 candidates to pass to the Human
Knowledge Injector. This excludes the candidates like ‘(((” and “]))’
which have a high term frequency but low inverse document
frequency making them less informative.

Human Knowledge Injector
The Injector takes the top-20 candidates as the input and involves
human experts in the learning. The human experts identify the
physicochemically meaningful tokens from the candidates and
add them into the token dictionary D. In addition, the experts
conduct two generalization steps to inject knowledge into the
extractor and validator, respectively.

One is to categorize the tokens in the dictionary into a set of
groups {gi} according to their physicochemically characteristics.
For each group, the experts generate selection criteria to make
the results explainable (as the results shown in Figure 2). A set of
regular expressions is also generated for each group by observing
the token patterns. The token extractor will use these expressions
for more efficient extraction. This makes the results generalizable.
For example, a regular expression ‘[??+?]’ generated from tokens
‘[Fe+4]’ can help identify ‘[Lu+3]’, ‘[Cu+2]’ and ‘[Al+3]’ in the
future. The dictionary learning process jointly conducted by the
extractor and injector is then repeated until no tokens can be
identified and the dictionary D is ready. This results in eight
groups of 109 tokens as shown in Figure 3.

The injector also learns the inter-group relations by calculating
the transition probabilities among groups. We encapsulate the
probabilities into a transition matrix T in which the (i, j)th entity
indicates the probability of observing a token from the group gj

when a token from the group gi is observed previously. Denoting
tk and tk+1 as two consecutive tokens, we have

Tij = Pr(tk+1 ∈ gj | tk ∈ gi). (7)

Note that the transition matrix T is asymmetric and we will inject
it into the validator for the online tokenization process. The whole
offline state algorithm is defined in Algorithm 1.

Sequence Validator
The validator works together with the Token Extractor to split a
sequence into actual tokens based the token dictionary D and
transition matrix T . In the online tokenization process for a
sequence s at the step k, the validator selects for next step k +
1 the most possible token tk+1 that maximizes the probability
Pr(t0, t1, . . . , tk, tk+1) of observing the subsequence t0, t1, . . . , tk, tk+1.
This is a typical Markov Chain process and can be represented as
a probabilistic automaton

A = ({gi},D,T ), (8)

where we use the {gi},D,T as the states, symbol set and transition
matrix, respectively. A visual illustration of the automaton can be
found in Figure 3.

We use the automaton A to find the best partition of a sequence
into tokens. At a given step k and a position i in the current
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Figure 3. Tokens, Transitions, Groups and the Probabilistic Automaton.

sequence, the Token Extractor reads in n characters from current
sequence (n equals to the maximum length of tokens in D). The
validator searches from the n-character sub-sequence for a set {t̂i}
of all possible candidate tokens that appear in the dictionary D,
and selects the one which maximizes the transition probability
for the step k + 1 as

tk+1 = arg maxt̂i∈{t̂k+1} Pr(t̂i ∈ gj | tk ∈ gi). (9)

The rest of the candidate tokens and current position i are pushed
into a stack �. In case the candidate set is empty (i.e. no tokens
can be detected at current position), we pop from the stack � to
find the last position that we have valid candidates. The validator
returns to the position and restarts by evaluating the candidates
at the position. The algorithm is a backtracking algorithm that we
formally defined in Algorithm 2.

Generating the Representation x using Word Embedding
Once the tokens are extracted from sequences, we pool them
for word embedding. It generates for each token a vector rep-
resentation t ∈ R

m, so that the representation can be used to
generate the drug/compound representation x ∈ R

d. To this end,
word embedding learns a linear space R

m, in which tokens, once
being represented into the space, distribute closely with their
contextually related tokens (i.e. those co-occur frequently within
the same sliding windows with them) while far from the non-
related ones. For example, the distance of representations of ‘C’
and ‘O’ is smaller than that of the ‘[Cl-]’ and ‘=’.

We adopt the Word2Vec [36] and Skip-gram model [37] to
conduct the learning by setting the dimensionality of the target
space m = 300, the context window size of 12 and the negative
sample rate at 15. In this case, Skip-gram generates positive
training examples by taking each token in a 15-token window

as the predictor, the rest of 14 tokens as the context target
and a label 1 indicating the contextual relatedness. By contrast,
Skip-gram generates negative training example by replacing the
context targets with those from different windows (randomly
selected) and setting the label to 0 indicating the non-contextual
relatedness.

After training, we have the token represented in a space R
300.

The drug/compound representation of a SMILES sequence s is
constructed by simply stacking its member token representations
as

xs = {t} ∈ R
‖s‖×300, ∀t ∈ s. (10)

However, this makes the length of the representation vary when
the length of the sequence ‖s‖ varies. We use zero-padding to
address this issue which extends the length of the representation
to 787 (the maximum length of sequences in ATC-SMILES) using
zero vectors 0 as

x = {xs ∈ R
‖s‖×300, 0 ∈ R

(787−‖s‖)×300}, x ∈ R
787×300. (11)

Then, the representation x is ready for the model learning.

Model f and Parameters θ

We design the model f with an ad hoc CNN by following the prac-
tice of TextCNN [38] family which is recognized with promising
performance on text liked sequences. To ease the description, we
call it ATC-CNN hereafter. As shown in Figure 4, ATC-CNN is a
seven-stream and light-weight CNN. The seven streams take the
x ∈ R

787×300 as the input and process it in parallel, which results
in seven feature maps. The feature maps are then flattened and
concatenated as a single feature vector for the inference in the
fully connected (FC) layers.
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Figure 4. Representation generation using ATC-CNN and the receptive fields captured for Aceclofenac. The kernel pyramid enables a multi-resolution
modeling and embedding of compound structures. It captures a double-bond and an Oxygen atom at the kernel size 2, expands to a Carbanyl group at
size 4 and includes a functional group of Esters at size 6. More branches and groups are included and jointly embedded while the kernel is expanding
to size 24.

Convolutional Layers
The convolution kernel κ c

i of the cth channel of the ith stream is
with a size of 787 × 2mi, which constraints the convolution to
be conducted only along the first dimension of x (i.e. the kernel
moves across tokens). This makes the convolution work as a local
structure extractor to summarize the relation of the 2mi adjacent
tokens.

As shown in Figure 4, while the mi varies from 1 to 12, the seven
kernels work together to form a pyramid-liked extraction scheme
for sensing the structure at different scales. This is especially
useful for modeling the functional groups and subbranches. In
Figure 4, it captures a double-bond and an Oxygen atom at the
kernel size 2, together with a Carbonyl group at size 4, and a
functional group of Esters at size 6. More and more branches and
connected structures are included and jointly embedded while
the kernel is expanding. This is also different from the LSTM [39–
42] or Transformers [43–46], which model the structure implicitly.
ATC-CNN is thus with better explainability. The convolution is

defined as

x ∗ κ c
i =

⎧⎨
⎩

[ mi∑
k=−mi

299∑
l=0

x(r + mi + k, l) · κ c
i (k, l)

]
r

⎫⎬
⎭ ,

∀r ∈ [0, 787 − 2mi + 1), ∀c ∈ [0, 256)

mi ∈ {1, 2, 3, 4, 5, 8, 12}, (12)

where the tuple (, ) is used to represent the element index of a
matrix. By repeating the convolution in Eq. (12) for 256 channels,
we have a feature map of shape (787 − 2mi + 1) × 256 for the ith

stream.
After the convolution, we use max-pooling (1-Max) to obtain

the feature map for each stream. It indeed takes the maximum
from each channel to construct a feature map of shape 1 × 256.
Finally, the seven feature maps are then concatenated into a single
vector of the length 256 × 7 = 1792 as the feature representation
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� ∈ R
1792×1. The whole process can be formulated as

� =
7⊕

i=1

Flatten

(
Maxpool

( 255⊕
c=0

[x ∗ κ c
i ]
))

, (13)

where
⊕

denotes the concatenation operator.

FC Layers and Predictions ŷ
In the FC layers, the feature map � is fully connected to another
layer of 14 neurons. The values on these 14 neurons are used
for generating predictions ŷ. This creates 1792 × 14 connections
on which we encapsulate a weight matrix W ∈ R

1792×14. The
predictions are then written

ŷ = Dropout(W��) ∈ R
14, (14)

where the dropout probability is set at 0.2.

Loss Function L(ŷ, y) and Parameter Learning
We measure the predictions with Binary Cross Entropy using
Logits Loss Function as

L(ŷ, y) = − 1
14

(
y� ln

(
g(ŷ)

)
+ (1 − y)� ln

(
1 − g(ŷ)

))
, (15)

g(x) = 1
1 + e−x

. (16)

Up to here, the parameter set θ includes a set of 256×7 kernels
from the convolutional layers and the weights from the FC layers
as

θ =
{
{κ c

i }, W
}
. (17)

We use Adam optimizer to learn the θ with batchsize = 16 and
learning rate 1e − 3.

Results and Discussion
Metrics for Multi-label ATC Classification
We adopt the five metrics, which were established in [19] and are
extensively employed in literature, to evaluate the performance
of ATC classification in multi-label prediction setting as follows:

Aiming = 1
N

N∑
i=1

( ‖Li ∩ L̂i‖
‖L̂i‖

)
(18)

Coverage = 1
N

N∑
i=1

( ‖Li ∩ L̂i‖
‖Li‖

)
(19)

Accuracy = 1
N

N∑
i=1

( ‖Li ∩ L̂i‖
‖Li ∪ L̂i‖

)
(20)

Absolute True = 1
N

N∑
i=1

(
�(Li, L̂i)

)
(21)

�(Li, L̂i) =
{

1, if Li is identical with L̂i.
0, otherwise.

(22)

Absolute False = 1
N

N∑
i=1

( ‖Li ∪ L̂i‖ − ‖Li ∩ L̂i‖
M

)
(23)

where N donates the total number of all samples, and M repre-
sents the number of labels. ‖ ‖ is the operator acting on the set
therein to count the number of its elements. Li is the true label
of the ith drug, while L̂i donates the predicated label. ∪ and ∩
represent the union and intersection operation, respectively. To
ease the reading, we use ↑ as the indicator for positive indices (i.e.
Aiming, Coverage, Accuracy and Absolute True) when presenting
the results. Similarly, we use ↓ for negative indices (e.g. Absolute
False).

Cross-validation
We use jackknife test[47] for cross-validation, which is considered
the least arbitrary method that outputs unique outcome for the
ATC benchmark dataset [48]. Therefore, jackknife test is com-
monly adopted for evaluating the ATC predictors in almost all the
previous studies [4–7, 9–15].

Comparison with SOTA Methods
We compare the performance of the proposed ATC-CNN with
14 SOTA methods that are with performance reported in the
five metrics. The 14 methods include those using various repre-
sentations (chemical interactions, chemical structural features,
molecular fingerprint features, pre-trained word embedding, ATC
codes association information and drug ontology information)
and models (SVM, ML-GKR, LIFT, NLSP, RAKEL, RR, CNN, GCN,
hMuLab and LSTM). It is the most comprehensive comparison
that we can find in literature. To be consistent with previous
studies, we have also conducted experiments on the Chen-2012
benchmark. However, due to the aforementioned missing SIMILES
issue, we have to set the representations of the 98 out of 3883
drugs with absent SIMILES structures (2.52% of the dataset) to
zero vectors. The results are shown in Table 2.

ATC-CNN outperforms the SOTA methods by 1.62%, 6.40%,
7.15%, 7.68% and 0.22% on Chen-2012[4] in Aiming, Coverage,
Accuracy, Absolute True and Absolute False, respectively. The
superiority of the proposed method is more obvious on Absolute
True, and Absolute False, which are two of the strictest metrics.
This is an indication that ATC-CNN is better in providing the
exactly matched labels to these of the ground-truth (measured
by Absolute True), and is less possible to make all labels wrong
(measured by Absolute False). It is a preferable characteristic in
drug development because the risk-benefit ratio of developing
a new drug can be better evaluated before starting the costly
experimental process.

Comparison on Aligned Dataset
Although ATC-SMILES is with a larger scale than that of Chen-
2012[4], there are some mis-aligned items. We remove these items
to generate a subset consisting of 3785 drugs/compounds which
are shared in common by the ATC-SMILES and Chen-2012. We
call this set ATC-SMILES-Aligned hereafter. With ATC-SMILES-
Aligned, we can study the characteristics of ATC-CNN in more
detail by comparing its performance with that of CGATCPred[15].
CGATCPred is the only one in literature that has source code
available and allows users to retrain the model by themselves (see
statistics in Figure 1).

Overall Performance: As shown in Table 3, ATC-CNN outper-
forms the CGATCPred by 16.63%, 12.73%, 15.53%, 16.91% and
1.84% in Aiming, Coverage, Accuracy, Absolute True and Absolute
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Table 2. Performance comparison with SOTA methods. The best results are in bold font.

Method Year Dataset #Drugs Rep. Model Aiming Coverage Accuracy Absolute Absolute
↑ ↑ ↑ True ↑ False ↓

Chen et al. [4] 2012 Chen-2012 3883 I S Similarity Search 50.76% 75.79% 49.38% 13.83% 8.83%
iATC-mISF[5] 2017 Chen-2012 3883 I S F ML-GKR 67.83% 67.10% 66.41% 60.98% 5.85%
iATC-mHyb[6] 2017 Chen-2012 3883 I S F O ML-GKR 71.91% 71.46% 71.32% 66.75% 2.43%
EnsLIFT[7] 2017 Chen-2012 3883 I S F LIFT 78.18% 75.77% 71.21% 63.30% 2.85%
EnsANet_LR[9] 2018 Chen-2012 3883 I S F CNN,LIFT,RR 75.40% 82.49% 75.12% 66.68% 2.62%
EnsANet_LR⊗DO[9] 2018 Chen-2012 3883 I S F O CNN,LIFT,RR 79.57% 83.35% 77.78% 70.90% 2.40%
ATC-NLSP[10] 2019 Chen-2012 3883 I S F NLSP 81.35% 79.50% 78.28% 74.97% 3.43%
iATC-NRAKEL[11] 2020 Chen-2012 3883 I S RAKEL,SVM 78.88% 79.36% 77.86% 75.93% 3.63%
iATC-FRAKEL[12] 2020 Chen-2012 3883 F RAKEL,SVM 78.51% 78.40% 77.21% 75.11% 3.70%
FUS3[14] 2020 Chen-2012 3883 I S F CNN,LSTM,LIFT,RR 87.55% 69.73% 73.46% 68.71% 2.38%
FUS3⊗DO[14] 2020 Chen-2012 3883 I S F O CNN,LSTM,LIFT,RR 79.79% 84.22% 79.64% 73.04% 2.09%
iATC_Deep-mISF[13] 2020 Chen-2012 3883 I S F O DNN 74.70% 73.91% 71.57% 67.01% 0.00%
CGATCPred[15] 2021 Chen-2012 3883 I S E A CNN,GCN 81.94% 82.88% 80.81% 76.58% 2.75%
EnsATC[18] 2022 Chen-2012 3883 I S F hMuLab,LSTM 91.39% 84.32% 83.38% 80.09% 1.31%
ATC-CNN 2022 Chen-2012 3883 S CNN 93.01% 90.72% 90.53% 87.77% 1.53%
ATC-CNN 2022 ATC-SMILES 4545 S CNN 95.83% 94.14% 93.99% 91.77% 0.94%

Representation (Rep.) abbreviations: I - Chemical interactions, S - Chemical structural features, F - Molecular fingerprint features, O - Drug ontology information,
E - Pre-trained word embedding, and A - ATC codes association information.

Table 3. Performance comparison on ATC-SMILES-Aligned.

Predictor Effectiveness Efficiency

Model #parameters Aiming Coverage Accuracy Absolute Absolute Training ↓ Training ↓ Testing ↓
(million) ↑ ↑ ↑ True ↑ False ↓ (ms./epoch) (ms./sample) (ms./sample)

CGATCPred[15] 211.98 78.18% 79.91% 76.92% 72.84% 3.04% 67036.75 16.84 3.95
ATC-CNN 5.44 94.81% 92.64% 92.45% 89.75% 1.20% 19284.53 5.11 1.90

Figure 5. Performance comparison over labels/classes. ATC-CNN outperforms CGATCPred and is with smaller standard deviation.

False, respectively. Given the fact that the number of parameters
of ATC-CNN (5.44 million) is 97.43% less than that of CGATCPred
(211.98 million), this is a surprising result. Further benefiting from
the light-weight model, ATC-CNN is 229.55% and 107.89% faster
than CGATCPred in training and testing, respectively.

Class-dependent Performance: To investigate the generaliz-
ability of the proposed method, we compare the performance of
the two methods over labels/classes. The results are shown in
Figure 5.

The superiority of the proposed method is observed over
all classes. For example, ATC-CNN obtains an accuracy above
80% on 13 out of the 14 labels/classes, while there are only
four classes on which CGATCPred demonstrates a comparable
performance. Furthermore, ATC-CNN appears more stable than
CGATCPred, indicated by its smaller standard deviation than that
of CGATCPred.

It is worth mentioning that both methods show inferior
performance on class B with the accuracy below 80%. This is
due to fact that class B is with the largest portion of inorganic salt

(23.81%) when compared with that of other classes (less than 1%).
Inorganic salt (e.g. MgCl2, NaCl, KCl, CaCl2) are with a SMILES
length ranging from 3 to 7, which is much shorter than
the standard representation length 787. This introduces an
overwhelming number of zeros into their representations
(because of the padding) which makes them less informative than
others.

In addition, the most significant performance difference of the
two methods is observed in class A, where ATC-CNN outperforms
CGATCPred by 25.03%. The reason is that class A contains 28.85%
of multi-label instances of ATC-SMILES-Aligned. As we will see
in the next section that the majority of performance gain of
ATC-CNN over CGATCPred is obtained on multi-label instances,
it is not surprising that the performance difference on class A is
also unique among the 14 classes.
Performance over #Labels: We also compare the performance
over the number of labels. ATC-CNN outperforms CGATCPred
significantly as expected. However, on the metric Coverage, ATC-
CNN shows inferior performance over CGATCPred. The reason is
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Figure 6. Performance comparison over number of labels/classes. ATC-CNN outperforms CGATCPred and is with smaller standard deviation.

that CGATCPred is a method with preference on the recall. It tends
to output more labels and puts less focus on the precision. When
investigating jointly with the metrics of Aiming and Accuracy, it
is more evident that ATC-CNN obtains a better balance between
the precision and recall.

Both methods obtain a U-shape performance when the number
of labels increases. This is counterintuitive, because drugs with
more labels (ATC codes) usually raise more challenges to the mod-
els than those with less. The proposed method makes correct pre-
dictions for drugs with six labels (and ATC codes up to 11) such as
Chlorhexidine Gluconate (five labels or eight codes), Prednisolone
sodium phosphate (6 labels or 10 codes) and Dexamethasone
acetate (6 labels or 11 codes). The performance drops down to the
valley at point 3 and climbs up afterwards. This can be explained
by a Bernoulli process in which the network outputs six binary
variables corresponding to the six labels/classes, and the variables
are independent of each other. It becomes intuitive instantly that
the maximum entropy obtains when three out of the six variables
are with values of 1, while the rest of others are all 0.

In terms of single (#labels = 1) versus multiple (#labels > 1)
labels, the performance gain of ATC-CNN over CGATCPred on
multi-label ones is more significant than on single-label instances
with 35.47%, 2.49%, 22.29%, 27.61% and 4.55% in Aiming, Cover-
age, Accuracy, Absolute True and Absolute False, respectively.

Web Server
In addition to making the source code of ATC-CNN open on
Github.com, we develop a web server at http://www.aimars.
net:8090/ATC_SMILES/ to increase the availability of the method
and dataset. The web server takes a drug/compound ID, or SMILES
sequence as the input, and predicts the labels and top-five related
drugs/compounds. The ID and sequence are not necessarily from
ATC-SMILES, the server is capable of predicting labels for any
drugs or compounds with valid IDs or sequences.

Conclusion
We present a pilot study to explore the possibility of conducting
ATC classification solely based on the structural information (i.e.
SMILES sequences). A new dataset, which is with larger scale
than the traditional one, is constructed for the study. We also
propose a light-weight and ad hoc framework for ATC classifi-
cation. The framework is with better explainability than previ-
ous methods because it extracts and embeds tokens that are
both statistical and physicochemically meaningful, and gener-
ates compound representations by capturing the multi-resolution
structural characteristics. Its efficacy has been validated in the
experiments. This indicates that the ATC codes of drug/compound
can be predicted prior to the costly biochemical trails/experi-
ments to save the effort of drug development or basic research.

Key Points

• Construct a new benchmark ATC-SMILES for ATC clas-
sification which is with larger scale than transitional
benchmarks and eliminates the reliance on STITCH
database.

• Propose a new tokenization process which extracts and
embeds statistically and physicochemically meaningful
tokens.

• Propose a molecular structure-only deep learning
method which is with better explainability.

• The proposed method outperforms the state-of-the-art
methods.

Code and data availability
The dataset, source code, and web server are open to public
at https://github.com/lookwei/ATC_CNN for easier production of
this study.
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