
Linear-Time Graph Neural Networks for Scalable
Recommendations

Jiahao Zhang∗
The Hong Kong Polytechnic

University
22037278r@connect.polyu.hk

Rui Xue∗
North Carolina State University

rxue@ncsu.edu

Wenqi Fan†
The Hong Kong Polytechnic

University
wenqi.fan@polyu.edu.hk

Xin Xu
The Hong Kong Polytechnic

University
xin.xu@polyu.edu.hk

Qing Li
The Hong Kong Polytechnic

University
qing-prof.li@polyu.edu.hk

Jian Pei
Duke University
j.pei@duke.edu

Xiaorui Liu
North Carolina State University

xliu96@ncsu.edu

ABSTRACT
In an era of information explosion, recommender systems are vi-
tal tools to deliver personalized recommendations for users. The
key of recommender systems is to forecast users’ future behaviors
based on previous user-item interactions. Due to their strong ex-
pressive power of capturing high-order connectivities in user-item
interaction data, recent years have witnessed a rising interest in
leveraging Graph Neural Networks (GNNs) to boost the prediction
performance of recommender systems. Nonetheless, classic Matrix
Factorization (MF) and Deep Neural Network (DNN) approaches
still play an important role in real-world large-scale recommender
systems due to their scalability advantages. Despite the existence of
GNN-acceleration solutions, it remains an open question whether
GNN-based recommender systems can scale as efficiently as classic
MF and DNN methods. In this paper, we propose a Linear-Time
Graph Neural Network (LTGNN) to scale up GNN-based recom-
mender systems to achieve comparable scalability as classic MF
approaches while maintaining GNNs’ powerful expressiveness for
superior prediction accuracy. Extensive experiments and ablation
studies are presented to validate the effectiveness and scalability of
the proposed algorithm. Our implementation based on PyTorch is
available 1.

CCS CONCEPTS
• Information systems→ Collaborative filtering.

KEYWORDS
Collaborative Filtering, Recommender Systems, Graph Neural Net-
works, Scalability.

ACM Reference Format:
Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu.
2024. Linear-Time Graph Neural Networks for Scalable Recommendations.
In Proceedings of the ACM Web Conference 2024 (WWW ’24), May 13–17,

∗Equal contributions.
†Corresponding author: Wenqi Fan, Department of Computing, and Department of
Management and Marketing, The Hong Kong Polytechnic University.
1 https://github.com/QwQ2000/TheWebConf24-LTGNN-PyTorch

WWW ’24, May 13–17, 2024, Singapore, Singapore.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of
the ACM Web Conference 2024 (WWW ’24), May 13–17, 2024, Singapore, Singapore,
https://doi.org/10.1145/3589334.3645486.

2024, Singapore, Singapore. ACM, New York, NY, USA, 12 pages. https://doi.
org/10.1145/3589334.3645486

1 INTRODUCTION
In an era of information explosion, recommender systems are play-
ing an increasingly critical role in enriching users’ experiences
with various online applications, due to their remarkable abilities in
providing personalized item recommendations. The main objective
of recommender systems is to predict a list of candidate items that
are likely to be clicked or purchased by capturing users’ potential
interests from their historical behaviors [23]. A prevailing tech-
nique in modern recommender systems is collaborative filtering
(CF), which leverages the patterns across similar users and items to
predict the users’ preferences.

As one of the most representative CF methods, matrix factoriza-
tion (MF) models are introduced to represent users and items in a
low-dimensional embedding space by encoding the user-item in-
teractions matrix. After the emergence of MF models, a remarkable
stream of literature has made great efforts to improve the expressive
capability of user and item representations. As discussed in many
previous studies [35, 42, 43], we can divide these attempts into two
branches based on their modeling ability of user-item interaction
graphs. First, most early approaches in collaborative filtering focus
on the local connectivity of users and items, such as item similarity
models [24, 31] and deep neural networks (DNNs) [25, 47]. Second,
due to the intrinsic limitation of modeling high-order connectivity
in early CF models, recent years have witnessed a rising interest in
graph neural networks (GNNs) in recommendations. To be specific,
GNN-based CF models encode both local and long-range collab-
orative signals into user and item representations by iteratively
aggregating embeddings along local neighborhood structures in
the interaction graph [13, 23, 42], showing their superior perfor-
mance in modeling complex user-item interaction graphs.

Despite the promising potential of GNNs in modeling high-order
information in interaction graphs, GNN-based CF models have
not been widely employed in industrial-level applications majorly
due to their scalability limitations [22, 49]. In fact, classic CF mod-
els like MF and DNNs are still playing major roles in real-world
applications due to their computational advantages, especially in
large-scale industrial recommender systems [7, 10]. In particular,
the computation complexity for training these conventional CF
models, such as MF and DNNs, is linear to the number of user-item

ar
X

iv
:2

40
2.

13
97

3v
1 

 [
cs

.I
R

] 
 2

1 
Fe

b 
20

24

https://github.com/QwQ2000/TheWebConf24-LTGNN-PyTorch
https://doi.org/10.1145/3589334.3645486
https://doi.org/10.1145/3589334.3645486
https://doi.org/10.1145/3589334.3645486


WWW ’24, May 13–17, 2024, Singapore, Singapore. Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu

interactions in the interaction matrix, while the computation com-
plexity of training GNN-based CF models are exponential to the
number of propagation layers or quadratic to the number of edges
(as will be discussed in Section 2.3).

In web-scale recommender systems, the problem size can easily
reach a billion scale towards the numbers of nodes and edges in the
interaction graphs [28, 39]. Consequently, it is essential that scal-
able algorithms should have nearly linear or sub-linear complexity
with respect to the problem size. Otherwise, they are infeasible in
practice due to the unaffordable computational cost [38]. While
numerous efforts have continued to accelerate the training of GNN-
based recommender systems, including two main strategies focus-
ing on neighbor sampling [34, 49] and design simplification [23, 44],
none of them can achieve the linear complexity for GNN-based
solutions, leading to inferior efficiency in comparison with conven-
tional CF methods such as MF and DNNs. There is still an open
question in academia and industry:Whether GNN-based recommen-
dation models can scale linearly as the classic MF and DNN methods,
while exhibiting long-range modeling abilities and strong prediction
performance.

In this paper, our primary objective revolves around 1) preserving
the strong expressive capabilities inherent in GNNs while simultane-
ously 2) achieving a linear computation complexity that is compa-
rable to traditional CF models like MF and DNNs. However, it is
highly non-trivial to pursue such a scalable GNN design, since the
expressive power of high-order collaborative signals lies behind the
number of recursive aggregations (i.e., GNN layers). Moreover, the
embedding aggregation over a large number of neighbors is highly
costly. To achieve a linear computation complexity, we propose a
novel implicit graph modeling for recommendations with the single-
layer propagation model design and an efficient variance-reduced
neighbor sampling algorithm. Our contributions can be summarized
as follows:
• We provide a critical complexity analysis and comparison of
widely used collaboration filtering approaches, and we reveal
their performance and efficiency bottlenecks.
• We propose a novel GNN-based model for large-scale collab-
orative filtering in recommendations, namely LTGNN (Linear
Time Graph Neural Networks), which only incorporates one
propagation layer while preserving the capability of capturing
long-range collaborative signals.
• To handle large-scale user-item interaction graphs, we design
an efficient and improved variance-reduced neighbor sampling
strategy for LTGNN to significantly reduce the neighbor size
in embedding aggregations. The random error caused by neigh-
bor sampling is efficiently tackled by our improved variance
reduction technique.
• We conduct extensive comparison experiments and ablation
studies on three real-world recommendation datasets, includ-
ing a large-scale dataset with millions of users and items. The
experiment results demonstrate that our proposed LTGNN sig-
nificantly reduces the training time of GNN-based CF models
while preserving the recommendation performance on par with
previous GNN models. We also perform detailed time complex-
ity analyses to show our superior efficiency.

2 PRELIMINARIES
This section presents the notations used in this paper, and then
briefly introduces preliminaries about GNN-based recommenda-
tions and the computation complexity of popular CF models.

2.1 Notations and Definitions
In personalized recommendations, the historical user-item interac-
tions can be naturally represented as a bipartite graph G = (V, E),
where the node set V includes 𝑛 user nodes {𝑣1, · · · , 𝑣𝑛} and 𝑚

item nodes {𝑣𝑛+1, · · · , 𝑣𝑛+𝑚}, and the edge set E = {𝑒1, · · · , 𝑒 | E | }
consists of undirected edges between user nodes and item nodes.
It is clear that the number of undirected edges |E | equals to the
number of observed user-item interactions |R+ | in the training data
(i.e., |E | = |R+ |). The graph structure of G can be denoted as the ad-
jacency matrix 𝑨 ∈ R(𝑛+𝑚)×(𝑛+𝑚) , and its diagonal degree matrix
are denoted as 𝑫 . The normalized adjacency matrix with self-loops
is defined as 𝑨̃ = (𝑫 + 𝑰 )−

1
2 (𝑨 + 𝑰 ) (𝑫 + 𝑰 )−

1
2 . We use N(𝑣) to

denote the set of neighboring nodes of a node 𝑣 , including 𝑣 itself. In
addition, the trainable embeddings of user and item nodes in graph
G are denoted as 𝑬 = [𝒆1, . . . , 𝒆𝑛, 𝒆𝑛+1, . . . , 𝒆𝑛+𝑚]𝑇 ∈ R(𝑛+𝑚)×𝑑 ,
where its first 𝑛 rows are 𝑑-dimensional user embeddings and its
𝑛 + 1 to 𝑛 +𝑚 rows are 𝑑-dimensional item embeddings.

In the training process of GNN-based collaborative filtering mod-
els, we use (𝑬𝑘

𝑙
)𝑩 or (𝒆𝑘

𝑙
)𝑣 to denote an embedding matrix or a

single embedding vector, where 𝑘 is the index of training iterations
and 𝑙 is the index of propagation layers. The subscript (·)𝑩 or (·)𝑣
denotes the embedding for a batch of nodes 𝑩 or a single node 𝑣 .

2.2 Mini-batch Training
To provide effective item recommendations from user-item interac-
tions, a typical training objective is the pairwise loss function. We
take the most widely adopted BPR [37] loss as an example:

L𝐵𝑃𝑅 =
∑︁

(𝑢,𝑖, 𝑗 ) ∈O
− ln𝜎 (𝑦𝑢,𝑖 − 𝑦𝑢,𝑗 ), (1)

where O = {(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ R+, (𝑢, 𝑗) ∈ R−} denotes the pair-
wise training data. R+ and R− denotes observed and unobserved
user-item interactions. In practice, the training data O is hardly
leveraged in a full-batch setting due to the large number of user-
item interations [23, 42]. Therefore, mini-batch training is a com-
mon choice that splits the original data O into multiple compo-
nents 𝛀 = {O(𝑢1,𝑖1 ) ,O(𝑢2,𝑖2 ) , · · · ,O(𝑢 |R+ |,𝑖 |R+ | ) }, where O(𝑢𝑟 ,𝑖𝑟 ) =
{(𝑢𝑟 , 𝑖𝑟 , 𝑗) | (𝑢𝑟 , 𝑗) ∈ R−} contains all the training data including
positive and negative samples for a specific interaction (𝑢𝑟 , 𝑖𝑟 ). In
each training iteration, we first sample 𝐵 interactions from R+,
which is denoted as R̂+, satisfying |R̂+ | = 𝐵. Afterward, we create
the training data for R̂+ by merging the corresponding components
in 𝛀, which can be denoted as Ô(R̂+) = ⋃

(𝑢,𝑖 ) ∈ R̂+ O(𝑢,𝑖 ) . Thus,
the mini-batch training objective can be formalized as follows:

L̂𝐵𝑃𝑅 (R̂+) =
∑︁

(𝑢,𝑖, 𝑗 ) ∈ Ô ( R̂+ )

− ln𝜎 (𝑦𝑢,𝑖 − 𝑦𝑢,𝑗 ) . (2)

In each training epoch, we iterate over all user-item interactions in
R+, so themini-batch training objective L̂𝐵𝑃𝑅 needs to be evaluated
for |R+ |/𝐵 times (i.e., |E |/𝐵 times).



Linear-Time Graph Neural Networks for Scalable Recommendations WWW ’24, May 13–17, 2024, Singapore, Singapore.

2.3 GNNs and MF for Recommendations
In this subsection, we will briefly reviewMF and two representative
GNN-based recommendation models, including LightGCN [23] and
PinSAGE [49], and discuss their computation complexity.
LightGCN. Inspired by the graph convolution operator in GCN [30]
and SGC [44], LightGCN [23] iteratively propagates the user em-
bedding (𝒆𝑙 )𝑢 and item embedding (𝒆𝑙 )𝑖 as follows:

(𝒆𝑙+1)𝑢 =
1√︁
|N (𝑢) |

∑︁
𝑖∈N(𝑢 )

1√︁
|N (𝑖) |

(𝒆𝑙 )𝑖 , (3)

(𝒆𝑙+1)𝑖 =
1√︁
|N (𝑖) |

∑︁
𝑖∈N(𝑖 )

1√︁
|N (𝑢) |

(𝒆𝑙 )𝑢 . (4)

The embedding propagation of LightGCN can be re-written in
matrix form as follows:

𝑬𝑙+1 = 𝑨̃𝑬𝑙 , ∀𝑙 = 0, . . . , 𝐿 − 1 (5)

𝒀 =
1

𝐿 + 1

𝐿∑︁
𝑙=0

𝑬𝑙 , (6)

where 𝐿 denotes the number of GNN layers, and 𝒀 denotes the
model output of LightGCN with layer-wise combination. As Light-
GCN computes full embedding propagation in Eq. (5) for 𝐿 times
to capture 𝐿-hop neighborhood information, the computation com-
plexity of LightGCN in one training iteration is O(𝐿 |E |𝑑) with the
support of sparse matrix multiplications. Thus, the computation
complexity for one training epoch is O( | E |

𝐵
·𝐿 |E |𝑑) = O( 1

𝐵
𝐿 |E |2𝑑),

where | E |
𝐵

is the number of training iterations in one epoch.
PinSAGE. The embedding propagation in LightGCN aggregates all
the neighbors for a user or an item, which is less compatible with
Web-scale item-to-item recommender systems. Another important
embedding propagation rule in GNN-based recommendation is
proposed in PinSAGE:

(𝒏𝑙+1)𝑢 = Aggregate({ReLU(𝑸 · (𝒆𝑙 )𝑣 + 𝒒) | 𝑣 ∈ N̂ (𝑢)}), (7)
(𝒆𝑙+1)𝑢 = Normalize(𝑾 · Concat[(𝒆𝑙 )𝑢 ; (𝒏𝑙+1)𝑢 ] +𝒘), (8)

where 𝑸, 𝒒,𝑾 ,𝒘 are trainable parameters, and N̂ (𝑢) denotes the
randomly sampled neighbors for node 𝑢. If PinSAGE constantly
samples 𝐷 random neighbors for each node at each layer, and the
sampled 𝐵 edges have 𝑛𝐵 target nodes without repetition, the com-
putation complexity in each training iteration is O(𝑛𝐵𝐷𝐿𝑑2) as
discussed in previous studies [46]. Thus, the time complexity in the
entire training epoch is O( | E |

𝐵
·𝑛𝐵𝐷𝐿𝑑2) = O(|E|𝐷𝐿𝑑2), as 𝑛𝐵 and

𝐵 shares the same order. Moreover, the neighbor sampling in Pin-
SAGE incurs large approximation errors that impact the prediction
performance.
Matrix Factorization (MF). Matrix factorization and its neural
variant NCF [25] are simple but strong baselines for recommen-
dations at scale. Given learnable user embedding 𝒑𝑢 and item em-
bedding 𝒒𝑖 , MF models their interaction directly by inner product
as 𝑦𝑢,𝑖 = 𝒑𝑇𝑢 𝒒𝑖 , while NCF models the interaction by deep neural
networks as follows:

𝒆𝐿 = 𝜙 (𝑾𝐿 (· · ·𝜙 (𝑾2𝜙 (𝑾1

[
𝒑𝑢
𝒒𝑖

]
+ 𝒃1) + 𝒃2) · · · ) + 𝒃𝐿), (9)

𝑦𝑢,𝑖 = 𝜎 (𝒉𝑇 𝒆𝐿), (10)

where𝑾 , 𝒃 and 𝒉 are trainable parameters, and 𝜙 is a non-linear
activation function. In each training iteration, the computation
complexity for MF and NCF is O(𝐵𝑑) and O(𝐵𝐿𝑑2), which stands
for the complexity of dot products andMLPs, respectively. Thus, the
time complexity in each training epoch for MF and NCF is O(|E|𝑑)
and O(|E|𝐿𝑑2).
Inefficiency of GNNs. In comparison with conventional MF mod-
els, GNNs’ inefficiency lies behind their non-linear complexity with
respect to the number of edges |E | or layers 𝐿. For example, the time
complexity for LightGCN is O( 1

𝐵
𝐿 |E |2𝑑), which grows quadrat-

ically with |E |, and PinSAGE has a complexity of O(|E|𝐷𝐿𝑑2),
which grows exponentially with 𝐿. In this paper, we pursue a linear-
time design for GNNs, which means the time complexity of our
proposed model is expected to be O(𝐶 |E |𝑑), where 𝐶 is a small
constant (e.g., 𝐶 = 𝐿𝑑 for NCF).

3 THE PROPOSED METHOD
The scalability issue of GNN-based recommendation models in-
spires us to pursue a more efficient algorithm design with linear
computation complexities. However, to reduce the computation
complexity while preserving GNNs’ long-range modeling ability,
we need to overcome two main challenges:
• Layer and expressiveness: Increasing the number of layers 𝐿
in GNNs can capture long-range dependencies, but the complex-
ity (e.g., O(|E|𝐷𝐿𝑑2) in PinSAGE) can hardly be linear when 𝐿

is large.
• Neighbor aggregation and random error: The number of
neighbors 𝐷 aggregated for each target node in a GNN layer
substantially affects both computation cost and approximation
error. Aggregating all neighbors (e.g., LightGCN) is costly, while
aggregation with random sampling incurs large errors (e.g.,
PinSAGE).

To address these challenges, we propose implicit graph modeling
in Section 3.1 to reduce the layer number 𝐿 significantly, and a
variance-reduced neighbor sampling strategy in Section 3.2 to lower
the neighbor aggregation cost for high-degree nodes. We carefully
handle the numerical and random errors of our designs, and ensure
the strong expressiveness of our proposed LTGNN.

3.1 Implicit Modeling for Recommendations
Personalized PageRank [32] is a classic approach for the measure-
ment of the proximity between nodes in a graph. It is adopted by
a popular GNN model, PPNP (Personalized Propagation of Neural
Predictions) [19], to propagate node embeddings according to the
personalized PageRank matrix:

𝑬𝑘𝑃𝑃𝑁𝑃 = 𝛼

(
𝑰 − (1 − 𝛼)𝑨̃

)−1
𝑬𝑘𝑖𝑛, (11)

where 𝛼 is the teleport factor and 𝑬𝑘
𝑖𝑛

is the input node embedding.
Due to the infeasible cost of matrix inversion, APPNP approximates
this by 𝐿 propagation layers:

𝑬𝑘0 = 𝑬𝑘𝑖𝑛, (12)

𝑬𝑘
𝑙+1 = (1 − 𝛼)𝑨̃𝑬

𝑘
𝑙
+ 𝛼𝑬𝑘𝑖𝑛, ∀𝑙 = 0, . . . , 𝐿 − 1 (13)

such that it can capture the 𝐿-hop high-order information in the
graph without suffering from over-smoothing due to the teleport



WWW ’24, May 13–17, 2024, Singapore, Singapore. Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu

Figure 1: An illustration of our model architecture. (a) The forward process of our model aims to solve the PPNP fixed-point
equation, which expresses an equilibrium state of the embedding propagations, and can be used to capture long-range relations
between any pair of nodes regardless of their distance. (b) The PPNP fixed-point equation is solved with a single forward
propagation layer, which leverages the historical output embeddings in previous training iterations. (c) The process of efficient
variance-reduced neighbor sampling in LTGNN.
term𝛼𝑬𝑘

𝑖𝑛
. LightGCN exhibits a close relationwith APPNP although

the embedding from different propagation layers is averaged with
a different weight (see the analysis in Section 3.2 of [23]). However,
like most GNNs, both APPNP and LightGCN suffer from scalability
issues due to the multi-layer recursive feature aggregations, which
greatly limit their applications in large-scale recommendations.

Motivated by the previous success of Implicit Deep Learning [9]
and Implicit GNNs [20, 33, 48], we propose implicit modeling for
graph-based recommendations (as shown in Fig. 1(a)), which di-
rectly computes the fixed point 𝑬𝑘∗ of the embedding propagation
in Eq. (13). Particularly, the output of our implicit model can be
formalized as the solution of a linear system:

𝑬𝑘𝑜𝑢𝑡 = RootFind(𝑬𝑘∗ ), s.t. 𝑬𝑘∗ = (1 − 𝛼)𝑨̃𝑬𝑘∗ + 𝛼𝑬𝑘𝑖𝑛, (14)

where the relation between output embedding 𝑬𝑘𝑜𝑢𝑡 and input em-
bedding 𝑬𝑘

𝑖𝑛
is implicitly defined by a root-finding process of the

fixed-point equation. Formulating graph-based recommendations
implicitly with a fixed-point equation has two advantages: 1) The
fixed-point 𝑬𝑘∗ models the equilibrium state of embedding propa-
gations, which is equivalent to the extreme state under an infinite
number of propagations, effectively capturing the long-range node
dependencies in graphs. 2) This implicit modeling provides flex-
ibility for the GNN design, as we can use any equation solver to
acquire 𝑬𝑘∗ instead of stacking multiple GNN layers.

Specifically, to pave the way to linear-time computation, we
propose to solve this fixed-point equation by a single forward prop-
agation layer, as shown in Fig. 1(b):

𝑬𝑘𝑜𝑢𝑡 = (1 − 𝛼)𝑨̃𝑬𝑘−1𝑜𝑢𝑡 + 𝛼𝑬𝑘𝑖𝑛, (15)

where 𝑬𝑘−1𝑜𝑢𝑡 is the historical output embeddings at previous training
iteration 𝑘−1 and serves as a better initialization for the fixed-point
solver. This single-layer design is ultra-efficient compared with
multi-layer embedding propagations but still captures multi-hop
neighbor information through information accumulation across
training iterations.

The backward propagation of implicit models is independent of
the forward computation [9, 20, 48]. Given the gradient from the
output embedding layer 𝜕L

𝜕𝑬𝑘
𝑜𝑢𝑡

, the gradient of 𝑬𝑘
𝑖𝑛

can be computed
based on the fixed-point equation in Eq. (14):

𝜕L
𝜕𝑬𝑘

𝑖𝑛

= 𝛼
𝜕L

𝜕𝑬𝑘𝑜𝑢𝑡

(
𝑰 − (1 − 𝛼)𝑨̃

)−1
. (16)

Due to the prohibitively high dimensionality of the adjacency ma-
trix, computing its inverse is infeasible. Therefore, we propose to
approximate this gradient by a single backward propagation layer:

𝜕L
𝜕𝑬𝑘

𝑖𝑛

= (1 − 𝛼)𝑨̃ 𝜕L
𝜕𝑬𝑘−1

𝑖𝑛

+ 𝛼 𝜕L
𝜕𝑬𝑘𝑜𝑢𝑡

, (17)

where 𝜕L
𝜕𝑬𝑘−1

𝑖𝑛

is the historical gradient of input embedding from
iteration 𝑘−1 and serves as a better initialization for the fixed-point



Linear-Time Graph Neural Networks for Scalable Recommendations WWW ’24, May 13–17, 2024, Singapore, Singapore.

solver. In summary, the forward and backward computation of our
single-layer GNN are formulated as:

Forward: 𝑬𝑘𝑜𝑢𝑡 = (1 − 𝛼)𝑨̃𝑬𝑘−1𝑜𝑢𝑡 + 𝛼𝑬𝑘𝑖𝑛, (18)

Backward:
𝜕L
𝜕𝑬𝑘

𝑖𝑛

= (1 − 𝛼)𝑨̃ 𝜕L
𝜕𝑬𝑘−1

𝑖𝑛

+ 𝛼 𝜕L
𝜕𝑬𝑘𝑜𝑢𝑡

, (19)

where the historical computations 𝑬𝑘−1𝑜𝑢𝑡 and 𝜕L
𝜕𝑬𝑘−1

𝑖𝑛

can be obtained
by maintaining the model outputs and gradients at the end of each
training iteration.

3.2 Efficient Variance-Reduced Neighbor
Sampling

The previous section presents an implicit modeling and single-layer
design for GNNs, which significantly reduces GNNs’ computation
complexity. For example, PinSAGE has a complexity of O(|E|𝐷𝑑2)
given there is only one layer (𝐿 = 1), which can be linear if 𝐷 is
a small constant. Unfortunately, 𝐷 affects the expressiveness of
GNNs in recommendations and cannot be easily lowered.

As explained in Section 2.2, the mini-batch training process sam-
ples user-item interactions (i.e., links in the user-item graph) in
each iteration, which means that nodes with higher degrees are
more likely to be sampled. These nodes also need more neighbors
to compute their output embeddings accurately. Therefore, a small
𝐷 will introduce large approximation errors and degrade the per-
formance. This is consistent with previous studies on the impact of
neighbor sampling in large-scale OGB benchmarks [8]. Some meth-
ods, such as VR-GCN [4] andMVS-GNN [6], use variance-reduction
(VR) techniques to reduce the random error in neighbor sampling.
However, we will show that these methods still require the full
aggregation of historical embeddings, which maintains an undesir-
able complexity. To address this issue, we will propose an efficient
VR neighbor sampling approach that achieves linear complexity
while controlling the random error.
Classic Variance-reduced Neighbor Aggregation. Recent re-
search has investigated variance reduction on GNNs, such as VR-
GCN and MVS-GNN [4, 6]:

(𝑿̂𝑘 )𝑉𝑅 = 𝑨̂(𝑬𝑘𝑖𝑛 − 𝑬
𝑘
𝑖𝑛) + 𝑨̃𝑬

𝑘
𝑖𝑛 (≈ 𝑨̃𝑬𝑘𝑖𝑛), (20)

where 𝑨̂ is an unbiased estimator of 𝑨̃, 𝑨̂𝑢,𝑣 =
|N (𝑢 ) |

𝐷
𝑨̃𝑢,𝑣 if node

𝑣 is sampled as a neighbor of target node 𝑢, otherwise 𝑨̂𝑢,𝑣 = 0.
𝑬
𝑘
𝑖𝑛 is the historical embeddings for approximating 𝑬𝑘

𝑖𝑛
. However,

such approaches need to perform full neighbor aggregations on the
historical embedding by computing 𝑨̃(𝑬𝑘𝑖𝑛). Importantly, this com-
putation has to be performed in each mini-batch iteration, leading
to the quadratic computation complexity O( | E |

2𝑑
𝐵
) for the whole

training epoch. Therefore, they seriously sacrifice the computa-
tional efficiency of neighbor sampling in large-scale recommender
systems. Besides, it is noteworthy that other GNN acceleration ap-
proaches based on historical embeddings [18, 50] also suffer from
the full aggregation problem.
Efficient Variance-reduced Neighbor Sampling. To further re-
duce the quadratic computation complexity, we propose to compute
the historical embedding aggregation periodically instead of com-
puting them in every training iteration. Specifically, we allocate

two memory variables 𝑴𝑖𝑛 and 𝑴𝑎𝑔 to store the historical input
embeddings and fully aggregated embeddings, where𝑴𝑎𝑔 = 𝑨̃𝑴𝑖𝑛 .
The input memory variable 𝑴𝑖𝑛 is updated periodically at the end
of each training epoch, and the aggregated embedding 𝑴𝑎𝑔 are up-
dated based on the renewed inputs. We name it as Efficient Variance
Reduction (EVR), which can be formulated as:

(𝑿̂𝑘 )𝐸𝑉𝑅 = 𝑨̂(𝑬𝑘−1𝑜𝑢𝑡 −𝑴𝑖𝑛) +𝑴𝑎𝑔 (≈ 𝑨̃𝑬𝑘−1𝑜𝑢𝑡 ), (21)

(𝑬̂𝑘𝑜𝑢𝑡 )𝐸𝑉𝑅 = (1 − 𝛼) (𝑿̂𝑘 )𝐸𝑉𝑅 + 𝛼𝑬𝑘𝑖𝑛 (≈ 𝑬𝑘𝑜𝑢𝑡 ), (22)

where the first term in Eq. (18) is approximated by (𝑿̂𝑘 )𝐸𝑉𝑅 , and the
second term remains unchanged. An illustration of this sampling
algorithm is shown in Fig. 1(c).

This variance reduction method can also be adapted to backward
computations. Symmetrically, the backward computation in Eq. (19)
can be computed with our proposed EVR as:

(𝑮̂𝑘 )𝐸𝑉𝑅 = 𝑨̂( 𝜕L
𝜕𝑬𝑘−1

𝑖𝑛

−𝑴 ′𝑖𝑛) +𝑴
′
𝑎𝑔 (≈ 𝑨̃

𝜕L
𝜕𝑬𝑘−1

𝑖𝑛

), (23)

( 𝜕L
𝜕𝑬𝑘

𝑖𝑛

)𝐸𝑉𝑅 = (1 − 𝛼) (𝑮̂𝑘 )𝐸𝑉𝑅 + 𝛼 𝜕L
𝜕𝑬𝑘𝑜𝑢𝑡

(≈ 𝜕L
𝜕𝑬𝑘

𝑖𝑛

), (24)

where 𝑴 ′
𝑖𝑛

stores the historical input gradients and 𝑴 ′𝑎𝑔 = 𝑨̃𝑴 ′
𝑖𝑛

maintains the fully aggregated gradients. Extra implementation
details of LTGNN can be found in Appendix. A.1.
Complexity analysis. In each training epoch, the efficiency bot-
tleneck lies in the forward and backward computations, which
costs O(𝑛𝐵𝐷𝑑), as we compute the variance-reduced neighbor
aggregation for 𝑛𝐵 target nodes, where each target node has 𝐷
random neighbors. Thus, the overall complexity of our method is
O( | E |

𝐵
·𝑛𝐵𝐷𝑑) = O(|E|𝐷𝑑), as each training epoch includes | E |

𝐵
it-

erations. Given that 𝐷 is a small constant, the complexity no longer
preserves an undesirable dependence on |E |2 or 𝐿, and instead, it
becomes linear. As a result, it significantly reduces the computa-
tional cost in comparison to previous GNN-based recommendation
models, as shown in Table. 1.

Table 1: Complexity Comparisons.
Models Computation Complexity

LightGCN O( 1
𝐵
𝐿 |E |2𝑑)

PinSAGE O(|E|𝐷𝐿𝑑2)
MF O(|E|𝑑)
NCF O(𝐿 |E |𝑑2)

LTGNN O(|E|𝐷𝑑)

4 EXPERIMENTS
In this section, we will verify the effectiveness and efficiency of
the proposed LTGNN framework with comprehensive experiments.
Specifically, we aim to answer the following research questions:
• RQ1: Can LTGNN achieve promising prediction performance
on large-scale recommendation datasets? (Section 4.2)
• RQ2: Can LGTNN handle large user-item interaction graphs
more efficiently than existing GNN approaches? (Section 4.3)
• RQ3: How does the effectiveness of the proposed LTGNN vary
when we ablate different parts of the design? (Section 4.4)



WWW ’24, May 13–17, 2024, Singapore, Singapore. Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu

Table 2: The comparison of overall prediction performance.
Dataset Yelp2018 Alibaba-iFashion Amazon-Large
Method Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
MF 0.0436 0.0353 0.05784 0.02676 0.02752 0.01534
NCF 0.0450 0.0364 0.06027 0.02810 0.02785 0.01807
GC-MC 0.0462 0.0379 0.07738 0.03395 OOM OOM
PinSAGE 0.04951 0.04049 0.07053 0.03186 0.02809 0.01973
NGCF 0.0581 0.0475 0.07979 0.03570 OOM OOM
DGCF 0.064 0.0522 0.08445 0.03967 OOM OOM
LightGCN (L=3) 0.06347 0.05238 0.08793 0.04096 0.0331 0.02283
LightGCN-NS (L=3) 0.06256 0.05140 0.08804 0.04147 0.02835 0.02035
LightGCN-VR (L=3) 0.06245 0.05141 0.08814 0.04082 0.02903 0.02093
LightGCN-GAS (L=3) 0.06337 0.05207 0.08169 0.03869 0.02886 0.02085
LTGNN (L=1) 0.06393 0.05245 0.09335 0.04387 0.02942 0.02585

4.1 Experimental Settings
We first introduce the datasets, baselines, evaluation metrics, and
hyperparameter settings as follows.

Table 3: Dataset statistics.
Dataset # Users # Items # Interactions
Yelp2018 31, 668 38, 048 1, 561, 406

Alibaba-iFashion 300, 000 81, 614 1, 607, 813
Amazon-Large 872, 557 453, 553 15, 236, 325

Datasets. We evaluate the proposed LTGNN and baselines on two
medium-scale datasets, including Yelp2018 and Alibaba-iFashion,
and one large-scale dataset Amazon-Large. Yelp2018 dataset is re-
leased by the baselines NGCF [42] and LightGCN [23], and the
Alibaba-iFashion dataset can be found in the GitHub repository2.
For the large-scale setting, we construct the large-scale dataset,
Amazon-Large, based on the rating files from the Amazon Review
Data website3. Specifically, we select the three largest subsets (i.e.,
Books, Clothing Shoes and Jewelry, Home and Kitchen) from the
entire Amazon dataset, and then keep the interactions from users
who are shared by all the three subsets (7.9% of all the users). The
rating scale is from 1 to 5, and we transform the explicit ratings into
implicit interactions by only keeping the interactions with ratings
bigger than 4. To ensure the quality of our Amazon-Large dataset,
we follow a widely used 10-core setting [25, 41, 42] and remove
the users and items with interactions less than 10. The statistical
summary of the datasets can be found in Table 3.
Baselines. The main focus of this paper is to enhance the scal-
ability of GNN-based collaborative filtering methods. Therefore,
we compare our method with the most widely used GNN back-
bone in recommendations, LightGCN [23] and its scalable variants
that employ typical GNN scalability techniques, including Graph-
SAGE [22], VR-GCN [4] and GAS [18]. The corresponding variants
of LightGCN are denoted as LightGCN-NS (for Neighbor Sampling),
LightGCN-VR, and LightGCN-GAS.

To demonstrate the effectiveness of our method, we also compare
it with various representative recommendation models, including
MF [31], NCF [25], GC-MC [1], PinSAGE [49], NGCF [42], and
DGCF [23]. Moreover, since we are designing an efficient collabora-
tive filtering backbone that is independent of the loss function, our
method is orthogonal to SSL-based methods [45, 51] and negative
sampling algorithms [27, 36]. We will explore the combination of
2https://github.com/wenyuer/POG
3https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/

our method and these orthogonal designs in future work. Extra
comparison results with one of the latest accuracy-driven GNN
backbones can be found in Appendix. A.3.
Evaluation and Parameter Settings. Due to the limited space,
more implementation details are presented in Appendix. A.2.

4.2 Recommendation Performance
In this section, we mainly examine the recommendation perfor-
mance of our proposed LTGNN, with a particular focus on compar-
ing LTGNN with the most widely adopted GNN backbone Light-
GCN. We use out-of-memory (OOM) to indicate the methods that
cannot run on the dataset due to memory limitations. The rec-
ommendation performance summarized in Table 2 provides the
following observations:
• Our proposed LTGNN achieves comparable or better results
on all three datasets compared to the strongest baselines. In
particular, LTGNN outperforms all the baselines on Yelp and
Alibaba-iFashion. The only exception is that the Recall@20 of
LightGCN (L=3) outperforms LTGNN (L=1) on the Amazon-
Large dataset. However, our NDCG@20 outperforms LightGCN
(L=3), and LTGNN (L=1) is much more efficient compared with
LightGCN (L=3), as LTGNN only uses one embedding propaga-
tion layer and very few randomly sampled neighbors.
• The scalable variants of LightGCN improve the scalability of
LightGCN by sacrificing its recommendation performance in
most cases. For instance, the results for LightGCN-VR, LightGCN-
NS, and LightGCN-GAS are much worse than LightGCN with
full embedding propagation on Amazon-Large. In contrast, the
proposed LTGNN has better efficiency than these variants and
preserves the recommendation performance.
• The performance of GNN-based methods like NGCF and Light-
GCN consistently outperforms earlier methods like MF and
NCF. However, GNNs without scalability techniques can hardly
be run large-scale datasets. For instance, GC-MC, NGCF, and
DGCF significantly outperform MF, but they are reported as
OOM on the Amazon-Large dataset. This suggests the necessity
of pursuing scalable GNNs for improving the recommendation
performance in large-scale industry scenarios.

4.3 Efficiency Analysis
To verify the scalability of LTGNN, we provide efficiency analysis in
comparison with MF, LightGCN, and scalable variants of LightGCN

https://github.com/wenyuer/POG
https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2/


Linear-Time Graph Neural Networks for Scalable Recommendations WWW ’24, May 13–17, 2024, Singapore, Singapore.

1 2 3 4 5
Number of layers

0.04

0.05

0.06

0.07

0.08

Re
ca

ll@
20

Yelp2018
LightGCN
LTGNN

1 2 3 4 5
Number of layers

0.03

0.04

0.05

0.06

0.07

ND
CG

@
20

Yelp2018
LightGCN
LTGNN

1 2 3 4 5
Number of layers

0.07
0.08
0.09
0.10
0.11
0.12

Re
ca

ll@
20

Alibaba-iFashion
LightGCN
LTGNN

1 2 3 4 5
Number of layers

0.02
0.03
0.04
0.05
0.06
0.07

ND
CG

@
20

Alibaba-iFashion
LightGCN
LTGNN

Figure 2: Performance comparison between LTGNN and LightGCN using different layers on Yelp2018 and Alibaba-iFashion.

2 5 10 15 20
Number of neighbors

0.056
0.058
0.060
0.062
0.064
0.066

Re
ca

ll@
20

Yelp2018

LTGNN-NS
LTGNN

2 5 10 15 20
Number of neighbors

0.042
0.044
0.046
0.048
0.050
0.052
0.054

ND
CG

@
20

Yelp2018

LTGNN-NS
LTGNN

2 5 10 15 20
Number of neighbors

0.065
0.070
0.075
0.080
0.085
0.090
0.095

Re
ca

ll@
20

Alibaba-iFashion

LTGNN-NS
LTGNN

2 5 10 15 20
Number of neighbors

0.022
0.026
0.030
0.034
0.038
0.042
0.046

ND
CG

@
20

Alibaba-iFashion

LTGNN-NS
LTGNN

Figure 3: Performance of a 1-layer LTGNN w.r.t different numbers of sampled neighbors on Yelp2018 and Alibaba-iFashion.
Table 4: The comparison of running time on three datasets.

Dataset Yelp2018 Alibaba-iFashion Amazon-Large
Method # Layer Runnning Time Runnning Time Running Time
LightGCN

𝐿 = 3

52.83s 51.4s 2999.35s
LightGCN-NS 46.09s 51.70s 4291.37s
LightGCN-VR 53.15s 59.79s 4849.59s
LightGCN-GAS 23.22s 26.576s 932.03s
LightGCN

𝐿 = 2

30.92s 30.78s 2061.75s
LightGCN-NS 37.17s 26.89s 1305.25s
LightGCN-VR 38.77s 30.33s 1545.34s
LightGCN-GAS 22.92s 25.04s 903.78s
LightGCN

𝐿 = 1

16.95s 18.02s 1117.51s
LightGCN-NS 13.90s 12.74s 684.84s
LightGCN-VR 15.52s 13.92s 870.82s
LightGCN-GAS 14.53s 13.35s 729.22s
MF - 4.31s 4.60s 127.24s
LTGNN 𝐿 = 1 14.72s 13.68s 705.91s

with different layers on all three datasets: Yelp2018, Alibaba-iFasion,
and Amazon-Large. From the running time shown in Table 4, we
draw the following conclusions:
• Our proposed single-layer LTGNN achieves comparable run-
ning time with one-layer LightGCN with sampling, and out-
performs the original LightGCN. This is consistent with our
complexity analysis in Section 3.2. Moreover, LTGNN is faster
than one-layer LightGCN with variance reduction, owing to
our improved and efficient variance reduction (EVR) techniques.
Although LTGNN is not substantially more efficient than some
of the one-layer GNNs, it has much better recommendation
performance, as shown in Figure 2.
• LTGNN demonstrates significantly improved computational
efficiency compared to baseline models with more than one
layer.
When combined with the results from Table 2, it becomes evi-
dent that LTGNN can maintain high performance while achiev-
ing a substantial enhancement in computational efficiency.
• While the running time of LTGNN is a few times longer than
that of Matrix Factorization (MF) due to their constant factor
difference in the complexity analysis (Table. 1), it’s important
to note that LTGNN already exhibits a nice and similar scaling
behavior as MF. This supports the better scalability of LTGNN in
large-scale recommendations compared with other GNN-based
methods.
• An interesting observation is that on large-scale datasets, full-
graph LightGCN surpasses LightGCN with neighbor sampling

on efficiency. This is mainly because of the high CPU overhead
of random sampling, which limits the utilization of GPUs.

To further understand the efficiency of each component of LTGNN,
a fine-grained efficiency analysis can be found in Appendix. A.3.

4.4 Ablation Study
In this section, we provide extensive ablation studies to evaluate
the effectiveness of different parts in our proposed framework.
Extra experiments on the effect of hyperparameter 𝛼 and different
variance-reduction designs can be found in Appendix. A.3.
Effectivenss of implicit graph modeling. We conduct an ab-
lation study to show the effect of embedding propagation layers
and long-range collaborative signals. Particularly, we use the same
setting for LightGCN and LTGNN and change the number of prop-
agation layers 𝐿. As illustrated in Figure 2, we have two key obser-
vations: 1) LTGNN with only 1 or 2 propagation layers can reach
better performance in comparison with LightGCN with more than
3 layers, which demonstrates the strong long-range modeling capa-
bility of our proposed model; 2) Adding more propagation layers
into LTGNN will not significantly improve its performance, which
means 𝐿 = 1 or 𝐿 = 2 are the best choices for LTGNN to balance its
performance and scalability.
Effectiveness of efficient variance reduction. In this study, we
aim to demonstrate the effectiveness of our proposed EVR algorithm
by showing the impact of the number of neighbors on recommen-
dation performance. As shown in Figure 3, LTGNN with efficient
variance reduction consistently outperforms its vanilla neighbor
sampling variant (i.e., LTGNN-NS) regardless of the number of
neighbors, illustrating its effect in reducing the large approximation
error caused by neighbor sampling. The recommendation perfor-
mance of LTGNN with efficient variance reduction is remarkably
stable, even under extreme conditions like sampling only 2 neigh-
bors for each target node. This indicates the great potential of our
proposed LTGNN in large-scale recommendations, as a GNN with
only one propagation layer and two random neighbors will be ultra-
efficient compared with previous designs that incur a large number
of layers and neighbors.
Numerical Analysis. In this experiment, we compute the PPNP
embedding propagation result 𝑬𝑘

𝑃𝑃𝑁𝑃
for the target nodes as an

indicator of long-range modeling ability , and we compute the



WWW ’24, May 13–17, 2024, Singapore, Singapore. Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu

0 2000 4000 6000 8000 10000
Training iteration(s)

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Re
la

tiv
e 

er
ro

r

Yelp2018
LTGNN
LTGNN-NS
LTGNN-Full

0 2000 4000 6000 8000 10000
Training iteration(s)

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Re
la

tiv
e 

er
ro

r

Alibaba-iFashion
LTGNN
LTGNN-NS
LTGNN-Full

Figure 4: The relative error between the model output 𝑬𝑘𝑜𝑢𝑡
and the exact PPNP propagation result 𝑬𝑘

𝑃𝑃𝑁𝑃
of the embed-

dings (i.e., | |𝑬𝑘𝑜𝑢𝑡 − 𝑬𝑘𝑃𝑃𝑁𝑃
| |𝐹 /| |𝑬𝑘𝑃𝑃𝑁𝑃

| |𝐹 ).

relative error between the model output 𝑬𝑘
𝐿
and the PPNP compu-

tation result. We use 𝐿 = 1 for LTGNN and its two inferior variants
without efficient variance reduction - LTGNN-NS and LTGNN-Full,
which denotes LTGNN with random neighbor sampling and LT-
GNN with exact full neighbor aggregation. From Figure 4, we have
two observations as follows: 1) On both datasets, the output of LT-
GNN converges to PPNP after around 4000 training iterations (i.e.,
less than 10 training epochs), which means our proposed LTGNN
can capture the long-range dependencies in user-item graphs by
using only one propagation layer; 2) By comparing LTGNN with
its variants, it is obvious that neighbor sampling without variance
reduction seriously hurts the modeling ability of LTGNN, and our
proposed LTGNN has similar convergence curves in comparison
to LTGNN with full aggregation, showing the effectiveness of our
proposed efficient variance reduction method.

5 RELATEDWORK
In this section, we summarize the related works on graph-based
collaborative filtering and scalable GNNs.

5.1 Graph Collaborative Filtering Models for
Recommendations

In modern recommender systems, collaborative filtering (CF) is
one of the most representative paradigm [12, 14, 16] to understand
users’ preferences. The basic idea of CF is to decompose user-item
interaction data into trainable user and item embeddings, and then
reconstruct the missing interactions [15, 17, 25, 31]. Early works
in CF mainly model the user-item interactions with scaled dot-
product [5, 12, 31], MLPs [11, 25], and LSTMs [15, 21]. However,
these models fail to model the high-order collaborative signals
between users and items, leading to sub-optimal representations of
users and items.

In recent years, a promising line of studies has incorporated
GNNs into CF-based recommender systems. The key advantage
of utilizing GNN-based recommendation models is that GNNs can
easily capture long-range dependencies via the information propa-
gation mechanism on the user-item graph. For example, an early
exploration, GC-MC, completes the missing user-item interactions
with graph convolutional autoencoders [1]. For large-scale recom-
mendation scenarios, PinSAGE [49] adapts the key idea of Graph-
SAGE [22] to recommendations and achieves promising results.
Another significant milestone in GNN-based recommendations is
the NGCF [42], which explicitly formulates the concept of collab-
orative signals and models them as high-order connectivities by
message-passing propagations. Afterward, LightGCN [23] indicates
the non-linear activation functions and feature transformations in

GNN-based recommender systems are redundant, and proposes to
simplify existing GNNs while achieving promising performance.
However, despite the success of previous GNN-based models in cap-
turing user preferences, existing works fail to address the neighbor-
hood explosion problem on large-scale recommendation scenarios,
which indicates that the scalability of GNN-based recommender
systems remains an open question.

5.2 Scalability of Graph Neural Networks
Recently, extensive literature has explored the scalability of GNNs
on large-scale graphs [2, 40], with a wide range of research focusing
on sampling methods, pre-computing methods, post-computing
methods, and memory-based methods. Sampling-based methods
lower the computation andmemory requirements of GNNs by using
a mini-batch training strategy on GNNs, which samples a limited
number of neighbors for target nodes in a node-wise [4, 6, 22],
layer-wise [3, 55], or subgraph-wise [52] manner, mitigating the
well-known neighborhood explosion problem. However, sampling-
based methods inevitably omit a large number of neighbors for
aggregation, resulting in large random errors. As a remedy for
this limitation, memory-based methods [18, 48, 50] leverage the
historical feature memories to complement the missing informa-
tion of out-of-batch nodes, approximating the full aggregation out-
puts while enjoying the efficiency of only updating the in-batch
nodes. Unfortunately, these methods may have complexities sim-
ilar to full neighbor aggregations, which block the way to linear
complexity. Besides, pre-computing or post-computing methods
decouple feature transformation and feature aggregations, enabling
capturing long-range dependencies in graphs while only train-
ing a feature transformation model. In particular, pre-computing
methods pre-calculate the feature aggregation result before train-
ing [44, 53], while post-computing methods firstly train a feature
transformation model and leverage unsupervised algorithms, such
as label propagation, to predict the labels [26, 54]. In retrospect, pre-
computing/post-computing methods may sacrifice the advantage of
end-to-end training, and the approximation error of these methods
is still unsatisfactory. These limitations in existing scalable GNNs
strongly necessitate our pursuit of scalable GNNs for large-scale
recommender systems in this paper.

6 CONCLUSION
Scalability is a major challenge for GNN-based recommender sys-
tems, as they often require many computational resources to handle
large-scale user-item interaction data. To address this challenge, we
propose a novel scalable GNN model for recommendation, which
leverages implicit graph modeling and variance-reduced neighbor
sampling to capture long-range collaborative signals while achiev-
ing a desirable linear complexity. The proposed LTGNN only needs
one propagation layer and a small number of one-hop neighbors,
which reduces the computation complexity to be linear to the num-
ber of edges, showing great potential in industrial recommendation
applications. Extensive experiments on three real-world datasets
are conducted to demonstrate the effectiveness and efficiency of our
proposed model. For future work, we plan to extend our design to
more recommendation tasks, such as CTR prediction, and explore
the deployment of LTGNN in industrial recommender systems.



Linear-Time Graph Neural Networks for Scalable Recommendations WWW ’24, May 13–17, 2024, Singapore, Singapore.

ACKNOWLEDGMENTS
The research described in this paper has been partly supported
by NSFC (project no. 62102335), General Research Funds from the
Hong Kong Research Grants Council (project no. PolyU 15200021,
15207322, and 15200023), internal research funds from The Hong
Kong Polytechnic University (project no. P0036200, P0042693, P0048
625, P0048752), Research Collaborative Project no. P0041282, and
SHTM Interdisciplinary Large Grant (project no. P0043302). Xiaorui
Liu is partially supported by the Amazon Research Award.

REFERENCES
[1] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-

tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).
[2] Hao Chen, Yuanchen Bei, Qijie Shen, Yue Xu, Sheng Zhou, Wenbing Huang,

Feiran Huang, Senzhang Wang, and Xiao Huang. 2024. Macro Graph Neural
Networks for Online Billion-Scale Recommender Systems. In WWW.

[3] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph
convolutional networks via importance sampling. In ICLR.

[4] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convolu-
tional Networks with Variance Reduction. In ICML.

[5] Xiao Chen, Wenqi Fan, Jingfan Chen, Haochen Liu, Zitao Liu, Zhaoxiang Zhang,
and Qing Li. 2023. Fairly adaptive negative sampling for recommendations. In
WWW.

[6] Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. 2020.
Minimal variance sampling with provable guarantees for fast training of graph
neural networks. In KDD.

[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for
youtube recommendations. In RecSys.

[8] Keyu Duan, Zirui Liu, Peihao Wang, Wenqing Zheng, Kaixiong Zhou, Tianlong
Chen, Xia Hu, and ZhangyangWang. 2022. A comprehensive study on large-scale
graph training: Benchmarking and rethinking. NeurIPS (2022).

[9] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai.
2021. Implicit deep learning. SIAM Journal on Mathematics of Data Science 3, 3
(2021), 930–958.

[10] Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. 2015. A multi-view deep
learning approach for cross domain user modeling in recommendation systems.
In WWW.

[11] Wenqi Fan, Qing Li, and Min Cheng. 2018. Deep modeling of social relations for
recommendation. In AAAI.

[12] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. 2022.
Graph trend filtering networks for recommendation. In SIGIR.

[13] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In WWW.

[14] Wenqi Fan, Yao Ma, Qing Li, Jianping Wang, Guoyong Cai, Jiliang Tang, and
Dawei Yin. 2020. A graph neural network framework for social recommendations.
TKDE 34, 5 (2020), 2033–2047.

[15] Wenqi Fan, Yao Ma, Dawei Yin, Jianping Wang, Jiliang Tang, and Qing Li. 2019.
Deep social collaborative filtering. In RecSys.

[16] Wenqi Fan, Shijie Wang, Xiao-yong Wei, Xiaowei Mei, and Qing Li. 2023.
Untargeted Black-box Attacks for Social Recommendations. arXiv preprint
arXiv:2311.07127 (2023).

[17] Wenqi Fan, Xiangyu Zhao, Qing Li, Tyler Derr, Yao Ma, Hui Liu, Jianping Wang,
and Jiliang Tang. 2023. Adversarial Attacks for Black-Box Recommender Systems
Via Copying Transferable Cross-Domain User Profiles. TKDE (2023).

[18] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec. 2021. Gnnau-
toscale: Scalable and expressive graph neural networks via historical embeddings.
In ICML.

[19] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2018.
Predict then Propagate: Graph Neural Networks meet Personalized PageRank. In
ICLR.

[20] Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui.
2020. Implicit graph neural networks. In NeurIPS.

[21] Qing Guo, Zhu Sun, Jie Zhang, and Yin-Leng Theng. 2020. An attentional
recurrent neural network for personalized next location recommendation. In
AAAI.

[22] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

[23] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng
Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for
recommendation. In SIGIR.

[24] Xiangnan He, Zhankui He, Jingkuan Song, Zhenguang Liu, Yu-Gang Jiang, and
Tat-Seng Chua. 2018. NAIS: Neural attentive item similarity model for recom-
mendation. TKDE 30, 12 (2018), 2354–2366.

[25] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW.

[26] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin Benson. 2020.
Combining Label Propagation and Simple Models out-performs Graph Neural
Networks. In ICLR.

[27] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu
Wang, and Jie Tang. 2021. Mixgcf: An improved training method for graph neural
network-based recommender systems. In KDD.

[28] Wei Jin, Haitao Mao, Zheng Li, Haoming Jiang, Chen Luo, Hongzhi Wen, Haoyu
Han, Hanqing Lu, Zhengyang Wang, Ruirui Li, et al. 2023. Amazon-M2: A
Multilingual Multi-locale Shopping Session Dataset for Recommendation and
Text Generation. In NeurIPS.

[29] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In ICLR.

[30] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[31] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In KDD.

[32] Page Lawrence. 1998. The pagerank citation ranking: Bringing order to the web.
Technical report (1998).

[33] Mingjie Li, Yifei Wang, YisenWang, and Zhouchen Lin. 2022. Unbiased Stochastic
Proximal Solver for Graph Neural Networks with Equilibrium States. In ICLR.

[34] Zhao Li, Xin Shen, Yuhang Jiao, Xuming Pan, Pengcheng Zou, Xianling Meng,
Chengwei Yao, and Jiajun Bu. 2020. Hierarchical bipartite graph neural networks:
Towards large-scale e-commerce applications. In ICDE.

[35] Chengyi Liu, Wenqi Fan, Yunqing Liu, Jiatong Li, Hang Li, Hui Liu, Jiliang
Tang, and Qing Li. 2023. Generative diffusion models on graphs: Methods and
applications. In IJCAI.

[36] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,
and Xiuqiang He. 2021. SimpleX: A simple and strong baseline for collaborative
filtering. In CIKM.

[37] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In UAI.

[38] Shang-Hua Teng et al. 2016. Scalable algorithms for data and network analysis.
Foundations and Trends® in Theoretical Computer Science 12, 1–2 (2016), 1–274.

[39] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In KDD.

[40] Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, and Qing Li. 2024. Fast graph conden-
sation with structure-based neural tangent kernel. In WWW.

[41] Xiang Wang, Xiangnan He, Yixin Cao, Meng Liu, and Tat-Seng Chua. 2019. Kgat:
Knowledge graph attention network for recommendation. In KDD.

[42] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.
Neural graph collaborative filtering. In SIGIR.

[43] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.
2020. Disentangled graph collaborative filtering. In SIGIR.

[44] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In ICML.

[45] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and
Xing Xie. 2021. Self-supervised graph learning for recommendation. In SIGIR.

[46] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. TNNLS
32, 1 (2020), 4–24.

[47] Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen.
2017. Deep matrix factorization models for recommender systems.. In IJCAI.

[48] Rui Xue, Haoyu Han, MohamadAli Torkamani, Jian Pei, and Xiaorui Liu. 2023.
LazyGNN: Large-Scale Graph Neural Networks via Lazy Propagation. In ICML.

[49] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD.

[50] Haiyang Yu, Limei Wang, Bokun Wang, Meng Liu, Tianbao Yang, and Shuiwang
Ji. 2022. GraphFM: Improving large-scale GNN training via feature momentum.
In ICML.

[51] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung
Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive
learning for recommendation. In SIGIR.

[52] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. GraphSAINT: Graph Sampling Based Inductive Learning Method.
In ICLR.

[53] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu
Tao, Zhi Yang, and Bin Cui. 2022. Graph attention multi-layer perceptron. In
KDD.

[54] Xiaojin Zhu. 2005. Semi-supervised learning with graphs. Carnegie Mellon
University.

[55] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.
2019. Layer-dependent importance sampling for training deep and large graph
convolutional networks. In NeurIPS.



WWW ’24, May 13–17, 2024, Singapore, Singapore. Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu

A APPENDIX

Algorithm 1: The training process of LTGNN
Input: User-item interactions R; BPR batch size 𝐵; Epochs 𝐸
Output: Optimized user-item embeddings 𝑬 𝑓 𝑖𝑛𝑎𝑙

𝑖𝑛

1 Initialize training iteration count 𝑘 ← 0;
2 Initialize the user-item embeddings 𝑬0

𝑖𝑛
∼ N(𝜇, 𝜎2);

3 for 𝑒𝑝𝑜𝑐ℎ = 1 . . . 𝐸 do
4 Compute variance reduction memory [𝑴𝑖𝑛 ;𝑴 ′𝑖𝑛] ←

[𝑬𝑘−1𝑜𝑢𝑡 ,
𝜕L

𝜕𝑬𝑘−1
𝑖𝑛

], [𝑴𝑎𝑔 ;𝑴 ′𝑎𝑔] ← 𝑨̃[𝑴𝑖𝑛 ;𝑴 ′𝑖𝑛]; ⊲O(|E|𝑑)

5 for sample 𝐵 interactions R̂+ from R+ do ⊲
| E |
𝐵

batches
6 Obtain training data

Ô = {(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ R̂+, (𝑢, 𝑗) ∈ R−};
7 Obtain the set of target nodes 𝑩 =

⋃
(𝑢,𝑖, 𝑗 ) ∈ Ô{𝑢, 𝑖, 𝑗};

8 Sample the random neighbors for each target node in
𝑩 to obtain 𝑨̂;

9 Obtain the forward output 𝑬𝑘𝑜𝑢𝑡 according to Eq. (21)
and Eq. (22); ⊲O(𝑛𝐵𝐷𝑑)

10 Compute the loss function L𝐵𝑃𝑅 in Eq. (2) and the
gradients at the output layer 𝜕L

𝜕𝑬𝑘
𝑜𝑢𝑡

; ⊲O(𝐵𝑑)

11 Compute the implicit gradients 𝜕L
𝜕𝑬𝑘

𝑖𝑛

according to

Eq. (23) and Eq. (24) ; ⊲O(𝑛𝐵𝐷𝑑)
12 Update the embedding table 𝑬𝑖𝑛 with an arbitrary

optimizer 𝑬𝑘+1
𝑖𝑛
← UPDATE(𝑬𝑘

𝑖𝑛
, 𝜕L
𝜕𝑬𝑘

𝑖𝑛

); ⊲O(𝑛𝐵𝑑)

13 Save 𝑬𝑘𝑜𝑢𝑡 and
𝜕L
𝜕𝑬𝑘

𝑖𝑛

to memory for the next training

iteration;
14 𝑘 ← 𝑘 + 1 ; ⊲The for-loop costs O(|E|𝐷𝑑)

15 return the optimized embeddings 𝑬 𝑓 𝑖𝑛𝑎𝑙

𝑖𝑛
= 𝑬𝑘

𝑖𝑛
.

A.1 Model Details
In this subsection, we will introduce the model details of our pro-
posed Linear Time Graph Neural Network (LTGNN), which are not
fully covered in previous Section 3.
Model Training. The detailed training process of LTGNN is pre-
sented in Algorithm 1. First, we initialize the training iteration count
𝑘 and the trainable user-item embeddings 𝑬𝑖𝑛 (line 1-2). Next, we
repeat the outer training loop 𝐸 times for 𝐸 training epochs (lines
3-16). In each training epoch, we first compute the variance reduc-
tion memory for variance reduced aggregation (line 4), and then
start the mini-batch training iterations (lines 5-15).

In each training iteration, the mini-batch interactions R̂+ are
sampled from the observed user-item interactions R+. For every
mini-batch, we first conduct negative sampling to obtain the train-
ing data Ô (line 6), and then sample the neighbors for the target
nodes in GNN aggregations (lines 7-8). After the negative and neigh-
bor sampling process, we compute the forward and backward prop-
agations of LTGNN, which are detailed in previous lines (lines 9-12).
At the end of each training iteration, the forward and backward
outputs are maintained for the incoming training iteration (line
13), enabling us to solve the PPNP fixed point with these historical
computations.

Random Aggregation with 𝑨̂. For each target node in 𝑩, which
consists of all the users, positive items, and negative items, we
sample 𝐷 random neighbors without repetition (including the node
itself). We denote the set of random neighbors for a target node
𝑢 as N̂ (𝑢), and its original neighbor set as N(𝑢). We define the
elements of the random adjacency matrix 𝑨̂ as follows:

𝑨̂𝑢,𝑣 =


|N (𝑢) |
𝐷

𝑨̃𝑢,𝑣, if 𝑢 ∈ 𝑩 and 𝑣 ∈ N̂ (𝑢)

0, otherwise
. (25)

Thus, the matrix form embedding propagation 𝑿̂ = 𝑨̂𝑬 is equiva-
lent to the node-wise random aggregation:

𝒙̂𝑢 =
∑︁

𝑣∈N̂ (𝑢 )

|N (𝑢) |
𝐷

𝑨̃𝑢,𝑣𝒆𝑣, ∀𝑢 ∈ 𝑩. (26)

It is clear that 𝒙̂𝑢 is an unbiased estimator of exact aggregation
𝒙𝑢 =

∑
𝑣∈N(𝑢 ) 𝑨𝑢,𝑣𝒆𝑣 , since

E[𝒙̂𝑢 ] =
|N (𝑢) |
𝐷
E[

∑︁
𝑣∈N(𝑢 )

𝑨̃𝑢,𝑣𝒆𝑣I(𝑣 | 𝑢)]

=
|N (𝑢) |
𝐷

∑︁
𝑣∈N(𝑢 )

𝑨̃𝑢,𝑣𝒆𝑣E[I(𝑣 | 𝑢)]

=
|N (𝑢) |
𝐷

∑︁
𝑣∈N(𝑢 )

𝑨̃𝑢,𝑣𝒆𝑣
C𝐷−1|N (𝑢 ) |−1

C𝐷|N (𝑢 ) |
=

∑︁
𝑣∈N(𝑢 )

𝑨𝑢,𝑣𝒆𝑣 = 𝒙𝑢 ,

where I(𝑣 | 𝑢) is an indicator function that equals to 1 when 𝑣 is
sampled for target node𝑢 and 0 otherwise. This unbiasedness holds
for both forward (line 9) and backward (line 11) computations in
Algorithm 1, and is in line with previous discussions in VR-GCN [4].
Detailed Complexity Analysis. In each training epoch, the effi-
ciency bottleneck lies in the forward and backward computations
in line 9 and line 11. According to Eq. (25), there are 𝑛𝐵𝐷 edges in
the random adjacency matrix 𝑨̂, so the variance-reduced neighbor
aggregation has complexity O(𝑛𝐵𝐷𝑑) with the help of sparse ma-
trix multiplications. Thus, the overall complexity of our method is
O( | E |

𝐵
· 𝑛𝐵𝐷𝑑) = O(|E|𝐷𝑑), since the inner training loop in lines

5-15 repeats | E |
𝐵

times, and 𝐵 and 𝑛𝐵 have the same order. Given
that 𝐷 is a small constant, the complexity becomes linear to the
number of edges |E |, demonstrating high scalability potential.

It is also noteworthy that our variance-reduced aggregation strat-
egy does not affect the linear complexity of LTGNN. Particularly,
the variance-reduced aggregations in lines 9 and 11 have the same
complexity as vanilla neighbor sampling methods in PinSAGE,
while the extra computational overhead of computing the variance
reduction memory is O(|E|𝑑), which is as efficient as the simplest
MF model (line 2). This means our proposed variance reduction
approach reduces the random error without sacrificing the training
efficiency.
Model Inference.After the model training process described in Al-
gorithm 1, we have several options to predict user preference with
the optimized input embeddings 𝑬 𝑓 𝑖𝑛𝑎𝑙

𝑖𝑛
. The simplest solution is to

directly infer the output embeddings with Eqs. (21) - (22), and then



Linear-Time Graph Neural Networks for Scalable Recommendations WWW ’24, May 13–17, 2024, Singapore, Singapore.

predict the future user-item interaction with an inner product. How-
ever, the training process may introduce small errors due to reusing
the historical computations, which could cause 𝑬 𝑓 𝑖𝑛𝑎𝑙

𝑜𝑢𝑡 to deviate
from the exact PPNP fixed-point 𝑬 𝑓 𝑖𝑛𝑎𝑙

𝑃𝑃𝑁𝑃
w.r.t. 𝑬 𝑓 𝑖𝑛𝑎𝑙

𝑖𝑛
. Therefore, a

possible improvement is to compute 𝑬 𝑓 𝑖𝑛𝑎𝑙

𝑃𝑃𝑁𝑃
with APPNP layers in

Eqs. (12) - (13). This strategic choice can reduce the error due to
reusing the previous computations, despite slightly compromising
the behavior consistency between training and inference.

We find that both inference choices can accurately predict the
user preference, and choosing either of them does not have a sig-
nificant impact on the recommendation performance. In practice,
we compute 𝑬 𝑓 𝑖𝑛𝑎𝑙

𝑃𝑃𝑁𝑃
with a 3-layer APPNP which takes 𝑬 𝑓 𝑖𝑛𝑎𝑙

𝑖𝑛
as

the input.

A.2 Parameter and Evaluation Settings
We implement the proposed LTGNN using PyTorch and PyG li-
braries. We strictly follow the settings of NGCF [42] and Light-
GCN [23] to implement our method and the scalable LightGCN
variants for a fair comparison. All the methods use an embedding
size of 64, a BPR batch size of 2048, and a negative sample size
of 1. For the proposed LTGNN, we tune the learning rate from
{5e-4, 1e-3, 1.5e-3, 2e-3} and theweight decay from {1e-4, 2e-4, 3e-4}.
We employ an Adam [29] optimizer to minimize the objective func-
tion. For the coefficient 𝛼 in PPNP, we perform a grid search over
the hyperparameter in the range of [0.3, 0.7] with a step size of 0.05.
To ensure the scalability of our model, the number of propagation
layers 𝐿 is fixed to 1 by default, and the number of sampled neigh-
bors 𝐷 is searched in {5, 10, 15, 20}. For the GNN-based baselines,
we follow their official implementations and suggested settings in
their papers. For the LightGCN variants with scalability techniques,
the number of layers 𝐿 is set based on the best choice of LightGCN,
and we search other hyperparameters in the same range as LTGNN
and report the best results.

In this paper, we adopt two widely used evaluation metrics in
recommendations: Recall@K and Normalized Discounted Cumula-
tive Gain (NDCG@K) [23, 42]. We set the K=20 by default, and we
report the average result for all test users. All the experiments are
repeated five times with different random seeds, and we report the
average results.

A.3 Additional Experiments
Comparison to GTN. Despite numerous works being orthogo-
nal to our contributions and not tackling the scalability issue, as
highlighted in Section 4.1, we remain receptive to comparing our
method with more recent, accuracy-focused baselines in the field.
We compare our proposed LTGNN with GTN [12], one of the latest
GNN backbones for recommendations, and the results are presented
in Table. 5 and Table. 6.

Table 5: Recommendation performance comparison results
with extra baseline GTN. Results marked with (*) are ob-
tained in GTN’s official settings.
Dataset Yelp2018 Alibaba-iFashion Amazon-Large
Method Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20
GTN 0.0679* 0.0554* 0.0994* 0.0474* OOM OOM
LTGNN 0.0681* 0.0562* 0.1079* 0.0510* 0.0294 0.0259

Table 6: Running time comparison results with extra baseline
GTN. Results marked with (*) are obtained in GTN’s official
settings.

Dataset Yelp2018 Alibaba-iFashion Amazon-Large
Method Running Time Running Time Running Time
GTN 97.8s* 99.6s* OOM
LTGNN 24.5s* 22.4s* 705.9s

To ensure a fair comparison, we closely followed the official
settings of GTN 4, which differ from our evaluation settings de-
tailed in Section 4.1 in embedding size and BPR batch size. From
the experiment result, we find that our proposed LTGNN shows
advantages in both recommendation performance and scalability,
even in comparison with one of the latest accuracy-driven GNN
backbones for recommendations.
Effect of Hyperparameter 𝛼 . Similar to APPNP [19], the tele-
port factor 𝛼 in LTGNN controls the trade-off between capturing
long-range dependencies and graph localities, directly impacting
recommendation performance. As shown in Fig. 5, we find that
LTGNN is rather robust to 𝛼 , as the performance does not drop
sharply in 𝛼 ∈ [0.35, 0.55]. In practice, we can set 𝛼 = 0.5, which is
the midpoint of capturing long-range dependency and preserving
the local structure expressiveness, and conduct a rough grid search
to find the optimal setting of 𝛼 .

0.3 0.4 0.5 0.6 0.7
alpha

0.04

0.05

0.06

0.07

0.08

Re
ca

ll@
20

Yelp2018

0.3 0.4 0.5 0.6 0.7
alpha

0.03

0.04

0.05

0.06

0.07

ND
CG

@
20

Yelp2018

0.3 0.4 0.5 0.6 0.7
alpha

0.02

0.03

0.04

0.05

0.06

ND
CG

@
20

Alibaba-iFashion

0.3 0.4 0.5 0.6 0.7
alpha

0.07

0.08

0.09

0.10

0.11
Re

ca
ll@

20
Alibaba-iFashion

Figure 5: The effect of hyper-parameter 𝛼 under Recall@20
and NDCG@20 metrics.

Effect of Different Variance Reduction Designs. We developed
an efficient variance reduction (EVR) mechanism in Section 3.2,
which can be applied to both forward and backward computations.
To evaluate the impact of different variance reduction designs on
the recommendation performance, we compare four variants of LT-
GNN, namely LTGNN-NS, LTGNN-FVR, LTGNN-BVR, and LTGNN-
BiVR. LTGNN-NS is the baseline model that uses implicit modeling
and vanilla neighbor sampling, while LTGNN-FVR, LTGNN-BVR,
and LTGNN-BiVR use forward variance reduction, backward vari-
ance reduction, and bidirectional variance reduction, respectively.

As can be seen from Table. 7, LTGNN variants with variance re-
duction outperform LTGNN-NSwithout variance reduction, demon-
strating the effectiveness of our proposed EVR approach. Moreover,
we observe that forward variance reduction (FVR) alone is sufficient
4 https://github.com/wenqifan03/GTN-SIGIR2022

https://github.com/wenqifan03/GTN-SIGIR2022


WWW ’24, May 13–17, 2024, Singapore, Singapore. Jiahao Zhang, Rui Xue, Wenqi Fan, Xin Xu, Qing Li, Jian Pei, and Xiaorui Liu

Table 7: Ablation study on different variance reduction de-
signs.
Dataset Yelp2018 Alibaba-iFashion
Method Recall@20 NDCG@20 Recall@20 NDCG@20
LTGNN-NS 0.06285 0.05137 0.08804 0.04147
LTGNN-BVR 0.06309 0.05160 0.08878 0.04185
LTGNN-BiVR 0.06321 0.05194 0.09241 0.04338
LTGNN-FVR 0.6380 0.05224 0.09335 0.04387

to achieve satisfactory recommendation performance. Surprisingly,
bidirectional variance reduction does not outperform forward vari-
ance reduction. We intend to investigate the reason behind this
phenomenon and explore the potential of bidirectional variance
reduction (BiVR) in our future work.
Detailed Efficiency Analysis. As discussed in Section 3.2, LTGNN
has linear time complexity with respect to the number of edges
|E | in the user-item interaction graph, which is comparable to MF.
However, as shown in Table. 4, the running time of LTGNN is
worse than MF on the large-scale Amazon-Large dataset, which
seems to contradict our complexity analysis. To understand this
phenomenon and demonstrate LTGNN’s scalability advantage, we
perform a comprehensive efficiency analysis of LTGNN and MF,
which identifies the main source of overhead and suggests potential
enhancements.

From the results presented in Table. 8, we have the following
observations:
• For both MF and LTGNN, the computation cost of negative
sampling is negligible, which has a minimal impact on the
total running time.
• For LTGNN, excluding the neighbor sampling time, the
model training time is linear in the number of edges |E |,

which is similar to MF. This indicates LTGNN’s high scalabil-
ity in large-scale and industrial recommendation scenarios.
• Besides, the computational overhead incurred by maintain-
ing and updating the memory spaces for variance reduction
is insignificant, which validates the high efficiency of our
proposed EVR approach.
• For LTGNN, the main source of extra computational over-
head is the neighbor sampling process for the target nodes,
which accounts for more than 50% of the total running time,
preventing LTGNN from achieving a perfect linear scaling
behavior. This is an implementation issue that can be im-
proved by better engineering solutions.

To further enhance the efficiency of LTGNN, we can adopt some
common engineering techniques. For example, we can follow the
importance sampling approach in PinSAGE [49], which assigns a
fixed neighborhood for each node in the interaction graph, avoiding
the expensive random sampling process. We plan to leave this as a
future work.

Table 8: Detailed efficiency comparison of LTGNN with MF.

Model Stage Yelp2018 Alibaba-iFashion Amazon-Large
|E | = 1.56𝑚 |E | = 1.61𝑚 |E | = 15.24𝑚

MF
Neg. Samp. 0.12s 0.21s 1.23s
Training 4.19s 4.39s 126.01s
Total 4.31s 4.60s 127.24s

LTGNN

Neg. Samp. 0.12s 0.21s 1.23s
Neigh. Samp. 7.98s 6.48s 512.55s
Training 6.62s 6.99s 192.13s

Memory Access <0.005s <0.005s <0.005s
Total 14.72s 13.68s 705.91s


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations and Definitions
	2.2 Mini-batch Training
	2.3 GNNs and MF for Recommendations

	3 The Proposed Method
	3.1 Implicit Modeling for Recommendations
	3.2 Efficient Variance-Reduced Neighbor Sampling

	4 Experiments
	4.1 Experimental Settings
	4.2 Recommendation Performance
	4.3 Efficiency Analysis
	4.4 Ablation Study

	5 Related Work
	5.1 Graph Collaborative Filtering Models for Recommendations
	5.2 Scalability of Graph Neural Networks

	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Model Details
	A.2 Parameter and Evaluation Settings
	A.3 Additional Experiments


