

Learning to Tokenize ID for LLM-based Recommendations

Wenqi Fan (范文琦)

Department of Computing (COMP) & Department of Management and Marketing (MM) The Hong Kong Polytechnic University (PolyU)

Email: [wenqi.fan@polyu.edu.hk,](mailto:wenqi.fan@polyu.edu.hk) Homepage: https://wenqifan03.github.io

Haohao Qu, Wenqi Fan, Zihuai Zhao, and Qing Li. Opening Minds • Shaping **TokenRec: Learning to Tokenize ID for LLM-based Generative Recommendation.** arXiv:2406.10450, 2024.

Items can be: Products, Friends, News, Movies, Videos, etc.

Recommender Systems (RecSys)

❑ Recommendation has been widely applied in online services:

 ❖ E-commerce, Content Sharing, Social Networking, ...

Product Recommendation

Frequently bought together

Total price: \$208.9 Add all three to Cart Add all three to List

Amazon's recommendation algorithm drives **35%** of its sales [from McKinsey, 2012]

Recommender Systems (RecSys)

❑ Recommendation has been widely applied in online services:

❖ E-commerce, Content Sharing, Social Networking ...

Large Language Models (LLMs)

They Are Changing Our Lives !

https://github.com/Hannibal046/Awesome-LLM/tree/main

Large Language Models (LLMs) ⁶

Large Language Models (LLMs)

A Promising Avenue: **LLM-empowered Recommender Systems**

Task-specific Prompts (LLMs Inputs)

Task-specific Recommendations (LLMs Outputs)

* Zhao, Zihuai, et al. "Recommender systems in the era of large language models (llms)." IEEE Transactions on Knowledge and Data Engineering (2024).

Introduction

The seamless alignment of LLMs and RecSys is not a trivial task.

• ……

Challenge: How to Effectively Index User and Item IDs for LLM-based Recommendations?

Example:

I find the purchase history list of Peter: Iphone 15 Pro Max, GPU, Apple Watch, … I wonder what is the next item to recommend to the user. Can you help me decide?

Potential Problems

- Ambiguity (e.g., *Peter, GPU*): users and items need detailed information to identify themselves in LLM-based RecSys.
- **Over-Length**: In recommendation scenarios with a high volume of interactions, it is probable that the input length may exceed the token limit of the LLM.
- **Hallucination** (MacBook 16 Pro Max): The generated text may not even correspond to a real existing item in the item database.
- **Time-consuming Inference**: The auto-regressive decoding and beam search processes for generating items are laborious for existing LLM-based RecSys.

Hua, Wenyue, et al. "How to index item ids for recommendation foundation models." ACM SIGIR-AP, 2023.

Users and Items Indexing in Collaborative Recommendations

Tokenizing Users/Items with Collaborative Knowledge into Discrete Tokens that are compatible for Natural Language

Methodology: Overview (Our TokenRec)

Learning to Tokenize ID for LLM-based Recommendations

Methodology: Masked Vector-Quantized Tokenizers (MQ-Tokenizer)

Encode Users&Items into Discrete Tokens.

Step 0:

Pre-training and Initialization (Collaborative Knowledge) GNN: $\mathbf{p}_i \in \mathbb{R}^a$, $\mathbf{q}_j \in \mathbb{R}^a$ Codebook:

Step 1: Masking (Generalizability) $\mathbf{p}'_i = \text{Mask}(\mathbf{p}_i, \mathcal{E}), \ \mathbf{q}'_i = \text{Mask}(\mathbf{q}_i, \mathcal{E}), \ \mathcal{E} \sim \text{Bernoulli}(\rho),$

Step 2: K-way Encoding (Generalizability) $\mathbf{a}_i^k = \text{Enc}^k(\mathbf{q}'_i) = \text{MLP}^k(\mathbf{q}'_i),$ $w_j^k = \arg \min_l ||\mathbf{a}_j^k - \mathbf{c}_l^k||^2,$ Quantize(\mathbf{a}_{j}^{k}) = $\mathbf{c}_{w_{j}}^{k}$, item $v_j \to$ tokens: $\{w_i^1, w_i^2, ..., w_i^K\}$ \rightarrow tokens' embeddings: $[\mathbf{c}_{w_i}^1, \mathbf{c}_{w_i}^2, ..., \mathbf{c}_{w_i}^K].$

Step 3: K-to-1 Decoding (Self-supervised Training) $\mathbf{r}_j = \text{Dec}(\{w_j^1, w_j^2, ..., w_j^K\}) = \text{MLP}(\frac{1}{K}\sum_{k}^{K} \mathbf{c}_{w_j^k}^k).$

Methodology: Masked Vector-Quantized Tokenizers (MQ-Tokenizer)

Encode Users&Items into Discrete Tokens

Methodology: MQ Tokenizer

Encode Users&Items into Discrete Tokens

By doing so, we can use only *1,536 (i.e., 3 × 512)* out-of-vocabulary (OOV) tokens to tokenize a total of *39,387 items* in the Amazon-Clothing dataset.

Prompt 1 (without user's historical interactions): I wonder what the **user 03** will like. Can you help me decide?

 \implies I wonder what the user $\langle u1-128 \rangle \langle u2-21 \rangle \langle u3-35 \rangle$ will like. Can you help me decide?

Prompt 2 (with user's historical interactions): According to what items the user 03 has interacted with: $item_08$, $item_24$, $item_63$. Can you describe the user's preferences?

 \implies According to what items the user_ $\langle u1-128 \rangle \langle u2-21 \rangle \langle u3-35 \rangle$ has interacted with: $item_{-} \langle v1-42 \rangle \langle v2-12 \rangle \langle v3-98 \rangle$, $item_{\alpha} \langle v1-42 \rangle \langle v2-12 \rangle \langle v3-87 \rangle$, item_ $\langle v1-42 \rangle \langle v2-53 \rangle \langle v3-128 \rangle$. Can you describe the user's preferences?

Methodology: Generative Retrieval

Time-consuming inference in decoding process

LLM-based RecSys encounter challenges with time-consuming inference because of the laborious auto-regressive decoding and beam search processes.

Image Credit: Wang H, Liu X, Fan W, et al. Rethinking large language model architectures for sequential recommendations[J]. arXiv preprint arXiv:2402.09543, 2024.

Hallucination issue (invalid item identifiers**)**

For example, items' title "*iPhone SE, 256 GB, starlight*" "*iPhone 15, 256 GB, starlight*" share most tokens but are significantly different products - with "*iPhone 15, 256 GB, starlight*' being a non-factual product.

Unseen items in inference stage

iPhone 16 Pro **New**

iPhone 16 **New**

Methodology: Generative Retrieval

The Proposed Pipeline:

- Step 1. Constructing Query $\mathcal{X}_i \rightarrow (\mathcal{P}, \mathcal{T}_{u_i}^c)$ or $(\mathcal{P}, \mathcal{T}_{u_i}^c, \{\mathcal{T}_{v_i}^c | v_j \in \mathcal{N}_{(u_i)}\}),$
- Step 2. User Modeling via LLMs $h_i = LLM4Rec(\mathcal{X}_i).$
- Step 3. Generating User Preference
	- $z_i = Proj(h_i),$

Step 4. Scoring $y_{ij} = \frac{\mathbf{z}_i \mathbf{q}_j}{\|\mathbf{z}_i\| \|\mathbf{q}_j\|}.$

Step 5. Top-K Retrieval

Generate User Preferences for Top-K recommendations

Methodology: Generative Retrieval

The Learning Objective:

A pairwise ranking loss

 $\mathcal{L}_{\text{LLM4Rec}} = \begin{cases} 1 - \text{sim}(\mathbf{z}_i, \mathbf{q}_j), & \text{if } \lambda = 1 \\ \max(0, \text{sim}(\mathbf{z}_i, \mathbf{q}_j) - \gamma), & \text{if } \lambda = -1 \end{cases}$

- $\sin(\cdot, \cdot)$ is a metric function to measure the similarity between dense representations, such as cosine similarity.
- λ indicates whether a user has interacted with an item.
- γ is the margin value for negative pairs. It ensures that when the representations of a negative pair are already adequately distant, there is no need to expend additional effort in increasing the distance between them.

 \ddotsc

Pool

Generate User Preferences for Top-K recommendations

Methodology: Overview

Learning to Tokenize ID for LLM-based Recommendations

Methodology: Discussion

• **Efficient Recommendations**

TokenRec proposes a novel LLM-empowered collaborative recommendation framework in generative retrieval paradigms, **bypassing the time-consuming decoding process**.

• **Generalizability to New Users and Items**

The proposed architecture can provide robust ID tokenization for unseen users and items **without fine-tuning the LLM4Rec component**.

• **Concise Prompts**

TokenRec provides an inference alternative that

relies solely on **user ID tokens,**. The proposed framework allows the generalization to new users&items by updating the external vector database instead of the LLM backbone and the Tokenizers.

Evaluation: Settings

1) Task

2) Datasets

TABLE I: Basic statistics of benchmark datasets.

Datasets	User-Item Interaction			
	#Users	#Items	#Interactions	Density $(\%)$
LastFM	1,090	3,646	37,080	0.9330
ML1M	3,416	6,040	447,294	2.1679
Beauty	22,363	12,101	197,861	0.0731
Clothing	23,033	39,387	278,641	0.0307

represents the number of users, items, and interactions.

3) Metrics: Top-K Hit Ratio (HR@K) Top-K Normalized Discounted Cumulative Gain (NDCG@K)

The higher the metrics, the better the performance.

Evaluation: Settings

3) Baselines

- **Collaborative Filtering (5):** MF, NeuCF , LightGCN, GTN, LTGNN.
- **Sequential Recommenders (3)**: SASRec, BERT4Rec, and S3Rec.
- **LLM-based Methods (4):**
	- **P5** is a pioneering work on LLM-based RecSys, which describes recommendation tasks in a text-to-text format and employs LLMs to capture deeper semantics for personalization and recommendation.
	- **CID** is a non-trivial indexing approach that considers the co-occurrence matrix of items to design numeric IDs so that items co-occur in user-item interactions will have similar numeric IDs.
	- **POD** encodes discrete prompts into continuous embeddings to reduce the excessive input length of LLMs based on P5 architecture.
	- **CoLLM** employs GNNs to provide continuous embeddings representing items and users for LLM-based recommendations.

Evaluation: Comparison Results

TABLE II: Performance comparison of recommendation algorithms on the LastFM and ML1M datasets.

* are the variants of TokenRec, namely the cases of using user ID tokens only for model inputs without considering item interaction history and using the unseen prompt during evaluation.

TokenRec significantly exceeds the strongest baselines by **19.08% on HR@20** and **9.09% on NCDG@20** in the LastFM dataset.

Evaluation: Comparison Results

TABLE III: Performance comparison of recommendation algorithms on the Beauty and Clothing datasets.

* are the variants of TokenRec, namely the cases of using user ID tokens only for model inputs without considering item interaction history and using the unseen prompt during evaluation.

LLM-empowered methods are **empirically superior** to conventional RecSys.

Evaluation: Generalizability, Efficiency, and Ablation Studies

TABLE IV: Performance comparison on seen and unseen users for generalizability evaluation.

TokenRec outperforms existing LLM-based methods in generalizability, thanks to the masking and K-way operations and the proposed generative retrieval framework.

Evaluation: Generalizability, Efficiency, and Ablation Studies

* The average improvement compared to the baselines.

TokenRec are more efficient in the inference process compared to the representative LLMbased methods, because it bypasses the timeconsuming auto-regressive generation and beam search processes of LLMs.

LastFM **Beauty** Module NG@20 NG@20 HR@20 $HR@20$ 0.0348 0.0276 $Full*$ 0.0936 0.0615 0.0253 w/o Masking 0.0848 0.0332 0.0573 0.0592 0.0250 $w/o K-way$ 0.0820 0.0309 w/o HOCK 0.0549 0.0172 0.0407 0.0149 s RO-VAE 0.0831 0.0314 0.0596 0.0253 0.0810 0.0308 0.0589 0.0247 s VO-VAE

TABLE VI: Results of Ablation Studies.

* "Full" denotes the complete version of TokenRec.

0.0750

s K-Means

"s" denotes the substitution made to the MQ-Tokenizers.

• **All the proposed components** contribute to the overall performance.

0.0281

0.0567

0.0237

• The comparison with the three representative quantization/clustering methods illustrates **the effectiveness of our MQ-Tokenizers in encoding collaborative knowledge** for LLMbased recommendations.

TABLE V: Average inference time (milliseconds) per user.

Evaluation: Hyper-Parameter Analysis

The suggested Masking Ratio is **0.2.**

Evaluation: Hyper-Parameter Analysis

(a) LastFM - $HR@20$

 128

256

 512

1024

L

(b) $ML1M - HR@20$

 -0.070 -0.069 -0.068 -0.067 -0.066 $\frac{1}{5}$ $\dot{2}$ $\dot{3}$ $\overline{4}$ \boldsymbol{K}

(e) LastFM - $NDCG@20$

(g) Amazon-Beauty - $NDCG@20$

As the number of users and items grows, the associated values of K and L should increase accordingly.

(c) Amazon-Beauty - $HR@20$

(d) Amazon-Clothing - $HR@20$

Conclusion

- We introduce a principle strategy named **Masked Vector-Quantized Tokenizer** to tokenize users and items tailored to LLMs, which contributes to incorporating high-order collaborative knowledge in LLM-based recommendations.
- We propose a novel framework (**TokenRec**) for recommender systems in the era of LLMs, where a **Generative Retrieval** paradigm is designed to effectively and efficiently recommend top-K items for users rather than directly generating tokens in natural language.
- We conduct **extensive experiments** on four widely used real-world datasets to empirically demonstrate the effectiveness of our proposed TokenRec, including the superior recommendation performance and its generalization ability in predicting new and unseen users' preferences.

Haohao Qu, Wenqi Fan, **Zihuai Zhao**, Qing Li

THANK YOU

Email: wenqi.fan@polyu.edu.hk Homepage: https://wenqifan03.github.io