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Deep learning, as a vital technique, has sparked a notable revolution in artificial intelligence (AI), resulting in a great change in
human lifestyles. As the most representative architecture, Transformers have empowered numerous advanced models, especially the
large language models (LLMs) that comprise billions of parameters, becoming a cornerstone in deep learning. Despite the impressive
achievements, Transformers still face inherent limitations, particularly the time-consuming inference resulting from the quadratic
computation complexity of attention calculation. Recently, a novel architecture namedMamba, drawing inspiration from classical
state space models, has emerged as a promising alternative for building foundation models, delivering comparable modeling abilities to
Transformers while preserving near-linear scalability concerning sequence length. This has sparked an increasing number of studies
actively exploring Mamba’s potential to achieve impressive performance across diverse domains. Given such rapid evolution, there is a
critical need for a systematic review that consolidates existing Mamba-empowered models, offering a comprehensive understanding of
this emerging model architecture. In this survey, we therefore conduct an in-depth investigation of recent Mamba-associated studies,
covering from three main aspects: the advancements of Mamba-based models, the techniques of adapting Mamba to diverse data, and the

applications where Mamba can excel. Specifically, we first recall the foundational knowledge of various representative deep learning
models and the details of Mamba-1&2 as preliminaries. Then, to showcase the significance of Mamba for AI, we comprehensively
review the related studies focusing on Mamba models’ architecture design, data adaptability, and applications. Finally, we present an
discussion of current limitations and explore various promising research directions to provide deeper insights for future investigations.
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1 Introduction

Over the past two decades, deep learning, as the most prominent artificial intelligence (AI) technique, has brought about
a revolution in various domains such as healthcare [88], autonomous systems [37, 60], recommender systems [104, 228],
and financial services [144, 216]. This period has witnessed the emergence of numerous deep neural networks (DNNs)
that have significantly altered human lifestyles, offering immense convenience to individuals. One notable example is
U-Net [151, 164], a robust deep learning model within the field of vision, which is extensively employed in medical
imaging for the examination of radiology scans like MRI and CT scans. Its application assists in the identification and
diagnosis of diseases, showcasing its effectiveness in this critical healthcare domain [112, 191]. Moreover, Graph Neural
Networks (GNNs) are employed in handling graph-structure data to support smart services, such as recommender
systems that suggest personalized content, products, or services to users [41, 42, 194]. Furthermore, Recurrent Neural
Networks (RNNs) are extensively adopted in machine translation due to their ability to capture the sequential and
contextual information essential for accurate translations [119, 167], empowering individuals from diverse linguistic
backgrounds to effectively communicate and comprehend each other’s ideas, opinions, and information.

Among the various deep learning architecture, Transformers have recently stood out and established its dominance
across a broad spectrum of applications [34, 175]. For instance, as the most representative large foundation models,
large language models (LLMs) like ChatGPT are fundamentally built on the Transformer architecture [2, 146, 228]. By
scaling their model sizes to billions and training on a mix of diverse data sources, these Transformer-based models
have demonstrated human-level intelligence with its impressive capabilities in language understanding, common sense
reasoning, and in-content-learning [44, 217]. This remarkable success is bolstered by the attention mechanism [174],
which enables the Transformer-based models to concentrate on relevant parts of the input sequence and facilitate better
contextual understanding. However, the attention mechanism also introduces a significant computational overhead
that increases quadratically with the input size [124, 233], which presents challenges in processing lengthy inputs. For
example, the rapid growth in computational cost makes Transformers impractical or infeasible to process substantial
sequences, thereby limiting their applicability in tasks like document-level machine translation [131] or long document
summarization [94].

Recently, a promising architecture, structured state space sequence models (SSMs) [58], have emerged to efficiently
capture complex dependencies in sequential data, becoming a formidable competitor to Transformer. These models,
inspired by classical state spacemodels [89], can be considered as a fusion of recurrent neural networks and convolutional
neural networks. They can be computed efficiently using either recurrence or convolution operations, achieving linear
or near-linear scaling with sequence length, thus significantly reducing the computational costs. More specifically, as
one of the most successful SSM variants,Mamba achieves comparable modeling capabilities to Transformers while
maintaining linear scalability with sequence length [55], propelling it into the realm of focal topics. Mamba first
introduces a simple yet effective selection mechanism that enables the model to filter out irrelevant information while
retaining necessary and relevant data indefinitely by parameterizing the SSM parameters based on the input. Then,
Mamba proposes a hardware-aware algorithm to compute the model recurrently with a scan instead of convolution,
achieving up to 3×faster computation on A100 GPUs. As shown in Figure 1, the powerful modeling capabilities for
complex and lengthy sequential data, along with near-linear scalability, position Mamba as an emerging foundation
model, poised to revolutionize various domains of research and applications, such as computer vision [199, 234], natural
language processing [111, 226], healthcare [152, 179, 198], etc. For example, Zhu et al. [234] propose Vim, which is
2.8×faster than DeiT [173] and saves 86.8% GPU memory when extracting features for high-resolution images. Dao and
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Gu [29] show the connections between SSMs and variants of attention and propose a new architecture that refines
selective SSM, achieving 2-8× faster on language modeling.

     Mamba Family

Text Generation Objective Detection 3D Point Cloud
Processing Recommendation

What are some of the key
factors that contribute to
climate change, and how do
they impact the Earth's
environment?

Climate change is a complex
phenomenon influenced by
various factors that interact
and have significant
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environment. Several key
factors contribute to climate
change ...

A user recently watched movies:
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Fig. 1. Examples of the applications of Mamba-based models for different downstream tasks.

Motivated by the powerful long-sequence modeling capabilities of Mamba and its great efficiency, a substantial body
of literature has emerged, focusing on employing and improving Mamba on various downstream tasks. Given this
significant surge in studies related to Mamba, it is crucial to conduct a comprehensive review of existing literature and
deliberate on potential directions for future research. In this survey, we thus conduct a comprehensive review of Mamba
from several perspectives to provide newcomers with a fundamental understanding of Mamba’s inner workings while
helping experienced practitioners stay abreast of its latest developments. Specifically, the remaining survey is organized
as follows: In Section 2, we recall the background knowledge of various representative deep neural networks, including
RNNs, Transformers, and State Space Models, while the details of Mamba are introduced in Section 3. Subsequently, we
summarize the recent advancements in Mamba-based studies from the perspectives of block design, scanning mode,
and memory management in Section 4. Then, Section 5 presents the techniques of adapting Mamba to diverse data,
including sequential and non-sequential data. Besides, representative applications of Mamba models are introduced
in Section 6, while the challenges and future directions are presented in Section 7. Finally, we summarize the whole
survey in Section 8.

Concurrent with our survey, several related surveys have been released, purely focusing on state space models [137,
183] and Vision Mamba [120, 199, 218]. Diverging from these surveys, this paper is centered on the associated research
concerning Mamba. It systematically analyzes existing literature from a novel standpoint to explore the evolution of

Mamba architecture and the data adaptation methods utilized in Mamba-based models.
Manuscript submitted to ACM
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2 Preliminary

Mamba is deeply intertwined with the recurrent framework of Recurrent Neural Networks (RNNs), the parallel compu-
tation and attention mechanism of Transformers, and the linear property of State Space Models (SSMs). Therefore, this
section aims to present an overview of these three prominent architectures, serving as a prerequisite for comprehending
Mamba thoroughly.

2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) excel in processing sequential data due to their capability to retain internal
memory [54]. Such networks have demonstrated remarkable effectiveness in a multitude of tasks that involve analyzing
and predicting sequences, e.g., speech recognition, machine translation, natural language processing, and time-series
analysis [69, 169]. In order to grasp the foundations of recurrent models, this section will offer a brief overview of the
standard RNN formulation.

Specifically, at each discrete time step 𝑘 , the standard RNN specifically processes a vector 𝑥𝑘 ∈ R𝐷 along with the
previous step’s hidden state ℎ𝑘−1 ∈ R𝑁 to produce an output vector 𝑜𝑘 ∈ R𝑂 and update the hidden state to ℎ𝑘 ∈ R𝑁 .
The hidden state serves as the network’s memory and retains information about the past inputs it has seen. This
dynamic memory allows RNNs to process sequences of varying lengths. Formally, it can be written as

ℎ𝑘 = tanh(Wℎ𝑥𝑥𝑘 +Wℎℎℎ𝑘−1 + 𝑏ℎ), (1)

𝑜𝑘 = W𝑜ℎℎ𝑘 + 𝑏𝑜 , (2)

whereWℎ𝑥 ∈ R𝑁×𝐷 is the weight matrix responsible for processing model inputs into hidden states,Wℎℎ ∈ R𝑁×𝑁

is the recurrent connections between hidden states, W𝑜ℎ ∈ R𝑂×𝑁 represents the weight used to generate outputs
derived from hidden states, 𝑏ℎ ∈ R𝑁 and 𝑏𝑜 ∈ R𝑂 correspond the biases, and tanh denotes the hyperbolic tangent
activation function introducing non-linearity to the RNN model. In other words, RNNs are nonlinear recurrent models
that effectively capture temporal patterns by harnessing the historical knowledge stored in hidden states.

However, there are several limitations associated with RNNs. First, RNNs have a restricted capability to effectively
extract long-range dynamics within input sequences. As information traverses through successive time steps, the
repeated multiplication of weights in the network can lead to dilution or loss of information. Consequently, it becomes
challenging for RNNs to retain and recall information from earlier time steps while making predictions. Second, RNNs
process sequential data incrementally, restricting their computational efficiency since each time step relies on the
preceding one. This makes parallel computations challenging for them. Furthermore, conventional RNNs lack built-in
attention mechanisms, which allow the network to capture global information within input sequences. This absence of
attention mechanisms hinders the network’s ability to selectively model the crucial segments of the data. o overcome
these constraints, Transformers and State Space Models have emerged, each tackling these challenges from different
perspectives. These two approaches will be further elaborated upon in the subsequent subsections.

2.2 Transformers

The Transformer [174] is a groundbreaking model in the realm of deep learning, revolutionizing various artificial
intelligence applications. Its introduction marked a significant departure from traditional sequence-to-sequence models
by employing a self-attention mechanism, facilitating the capture of global dependencies within model inputs. For
instance, in natural language processing, this self-attention capability allows the model to comprehend relationships
Manuscript submitted to ACM



A Survey of Mamba 5

between various positions in a sequence. It achieves this by assigning weights to each position based on its significance
relative to other positions. More specifically, a sequence of input vectors x is first transformed into three types of
vectors: Query 𝑄 , Key 𝐾 , and Value 𝑉 by utilizing linear transformations of the original input, defined by:

𝑄 = x ·W𝑄 , 𝐾 = x ·W𝐾 ,𝑉 = x ·W𝑉 , (3)

whereW𝑄 ,W𝐾 , andW𝑉 are the trainable parameters. The attention scores are computed by calculating the dot product
of 𝑄 and 𝐾 , then scaling the result by

√︁
𝑑𝐾 , where 𝑑𝐾 is the dimension of the key vectors. Such procedures are then

passed through a Softmax function to normalize the scores 𝑆 and produce attention weights, defined by:

𝑆 = Softmax(𝑄𝐾
𝑇√︁
𝑑𝐾

)𝑉 , (4)

Apart from performing a single attention function, multi-head attention is introduced to enhance the model’s ability
to capture different types of relationships and provide multiple perspectives on the input sequence. In multi-head
attention, an input sequence is processed in parallel by multiple sets of self-attention modules. Each head operates
independently, performing the exact computations as in the standard self-attention mechanism. The attention weights
from each head are then combined to create a weighted sum of the value vectors. This aggregation step allows the
model to leverage information from multiple heads and capture diverse patterns and relationships present in the input
sequence. Mathematically, the multi-head attention is computed as follows:

MultiHead(𝑄,𝐾,𝑉 ) = (𝑆1 ⊕ 𝑆2 ... ⊕ 𝑆𝑚) ·W𝑂 ,

where 𝑆𝑖 = Softmax(
𝑄𝑖𝐾

𝑇
𝑖√︁

𝑑𝐾

)𝑉𝑖 , 𝑖 ∈ [1,𝑚],
(5)

where𝑚 is the number of attention heads. ⊕ is the concatenation operation, andW𝑂 is the linear transformation to
project the multi-head attention scores to the final values.

2.3 State Space Models

State Space Models (SSMs) are a traditional mathematical framework utilized to depict the dynamic behavior of a
system over time [89]. Recent years have found the widespread applications of SSMs in diverse fields like control
theory, robotics, and economics [58, 59]. At its core, SSMs embody the system’s behavior through a collection of hidden
variables referred to as "states", enabling it to capture temporal data dependencies effectively. Different from RNNs,
SSMs are linear models characterised by their associative property. To be specific, in a classical state space model, two
key equations are formulated, i.e., state equation and observation equation, to model the relationships between input
𝑥 (𝑡) ∈ R and output 𝑦 (𝑡) ∈ R at current time 𝑡 , through a N-dimensional hidden state ℎ(𝑡) ∈ R𝑁 . The process can be
written by

ℎ′ (𝑡) = Aℎ(𝑡) + B𝑥 (𝑡), (6)

𝑦 (𝑡) = Cℎ(𝑡) + D𝑥 (𝑡), (7)

where ℎ′ (𝑡) is the derivative of current state ℎ(𝑡), A ∈ R𝑁×𝑁 is the state transition matrix that describes how states
change over time, B ∈ R𝑁×1 is the input matrix that controls how inputs affect state changes, C ∈ R1×𝑁 denotes the
output matrix that indicates how outputs are generated based on current states, and D ∈ R represents the command
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6 Qu et al.

coefficient that determines how inputs affect outputs directly. In general, most SSMs exclude the second term in the
observation equation, i.e., set D𝑥 (𝑡) = 0, which can be recognized as a skip connection in deep learning models.

2.3.1 Discretization. To adhere to the requirements of machine learning settings, SSMs must undergo a process of
discretization that transforms continuous parameters into discrete parameters. Discretization methods generally aim
to partition continuous time into 𝐾 discrete intervals with equal integration area as possible. To achieve the goal, as
one of the most representative solutions, Zero-Order Hold (ZOH) [138, 223] is successfully employed in SSMs, which
assumes that the function value remains constant over the interval Δ = [𝑡𝑘−1, 𝑡𝑘 ]. After ZOH discretization, the SSM
equations can be rewritten by

ℎ𝑘 = Aℎ𝑘−1 + B𝑥𝑘 , (8)

𝑦𝑘 = Cℎ𝑘 , (9)

where A = exp(ΔA), and B = (ΔA)−1 (exp(ΔA) − I) · ΔB, 𝑘 is the discrete time step. From these formulas, it is clear
that the discrete SSM has a similar structure to recurrent neural networks and, therefore, discrete SSMs can accomplish
inference processes with higher efficiency compared to Transformer-based models that compute attention on all inputs
in each auto-regressive decoding iteration.

2.3.2 Convolutional Computation. The discrete SSM, being a linear system, possesses the associated property and
therefore integrates seamlessly with convolutional computation. More specifically, it can calculate the output at each
time step independently as follows:

𝑦0 = CA
0
B𝑥0, (10)

𝑦1 = CA
1
B𝑥0 + CA

0
B𝑥1, (11)

𝑦2 = CA
2
B𝑥0 + CA

1
B𝑥1 + CA

0
B𝑥2, (12)

...... (13)

𝑦𝑘 = CA
𝑘
B𝑥0 + CA

𝑘−1
B𝑥1 + ... + CA

1
B𝑥𝑘−1 + CA

0
B𝑥𝑘 . (14)

By creating a set of convolutional kernels K = (CB, ...,CA𝑘B, ...), the recurrent computation can be converted to a
convolutional form as:

y = x ∗ K, (15)

where x = [𝑥0, 𝑥1, ...] and y = [𝑦0, 𝑦1, ...] ∈ R𝐿 denote the input and output sequences, respectively, while 𝐿 is the
sequence length. This convolutional computation allows SSMs to take full advantage of modern matrix computation
hardware (e.g., GPUs) to enable parallel computing during training process, which is impossible with RNNs utilizing
nonlinear activation functions. Notably, given an input 𝑥 (𝑘) with 𝐷 dimensions, the SSM computation will be calculated
separately for each dimension to produce a 𝐷-dimensional output 𝑦 (𝑡). In this case, the input matrix B ∈ R𝑁×𝐷 , the
output matrix C ∈ R𝐷×𝑁 , and the command matrix D ∈ R𝐷×𝐷 , while the state transition matrix remains unchanged,
i.e., A ∈ R𝑁×𝑁 .

2.3.3 Relationship among RNN, Transformer, and SSM. The computation algorithms of RNN, Transformer,
and SSM are depicted in Figure 2. On the one hand, the conventional RNN operates within a non-linear recurrent
Manuscript submitted to ACM
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framework where each computation depends solely on the previous hidden state and the current input. While this
format allows RNNs to quickly generate outputs during auto-regressive inference, it hampers their ability to fully
exploit GPU parallel computing, leading to slower model training. On the other hand, the Transformer architecture
performs matrix multiplications in parallel across multiple query-key pairs, which can be efficiently distributed across
hardware resources, which enables faster training of attention-based models. However, when it comes to generating
responses or predictions from Transformer-based models, the inference process can be time-consuming. For instance,
the auto-regressive design of language models entails generating each token in the output sequence sequentially, which
requires repetitive calculations of attention scores at each step, leading to slower inference times. Unlike RNNs and
Transformers, which are limited to supporting only one type of computation, discrete SSMs have the flexibility to
support both recurrent and convolutional computations, given its linear property. This unique capability allows SSMs
to achieve not only efficient inference but also parallel training. However, it should be noted that the most conventional
SSMs are time-invariant, meaning that their A, B, C, and Δ are unrelated to the model input 𝑥 . This would limit
context-aware modeling, which leads to inferior performance of SSMs in certain tasks such as selective copying [55].
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Fig. 2. An illustration of representative model architectures, namely Recurrent Neural Network (RNN), Transformer, and State Space
Model (SSM). (a) RNNs function within a nonlinear recurrent framework, facilitating rapid outputs during auto-regressive inference.
(b) Transformers execute matrix multiplications concurrently across numerous query-key pairs, facilitating parallel training. (c) SSMs
exhibit versatility by accommodating both recurrent and convolutional computations due to their linear nature. This fusion harnesses
the strengths of RNNs and Transformers, allowing SSMs for recurrent inference and parallel training. Despite this, traditional
time-invariant SSMs fall short in context-aware modeling, resulting in diminished performance in specific tasks.

3 Mamba

To address the aforementioned drawback of traditional SSMs in terms of their inferior context-aware capabilities,
Mamba is proposed by [55] as a potential alternative that promises to be a general sequence foundation model
backbone. More recently, Mamba-2 [29] proposes Structured Space-State Duality (SSD) that establishes a robust
theoretical framework connecting structured SSMs and various forms of attention, allowing us to transfer algorithmic
and systems optimizations originally developed for Transformers to SSMs. In this section, we will give a concise and
clear introduction to Mamba and Mamba-2.

Manuscript submitted to ACM



8 Qu et al.

3.1 Mamba-1: Selective State Space Model with Hardware-aware Algorithms

Selection Mechanism

Discretize

GPU
SRAM

GPU HBM

Proj.

(HiPPO-based Initialization)

Fig. 3. Overview of the Selective State Space Model with hardware-aware state expansions. The selective mechanism introduces
input-dependent dynamics, while the hardware computation algorithm optimizes memory usage within the more efficient levels of
GPU memory hierarchy.

Conventional SSMs have shown limited effectiveness in modeling text and other information-dense data [55],
impeding their progress in deep learning. In the pursuit of empowering SSMs with Transformers’ modeling capabilities,
Gu and Dao [55] introduces three innovative techniques based on Structured State Space Models, i.e., High-order
Polynomial Projection Operator (HiPPO)-based Memory Initialization, Selection Mechanism, and Hardware-aware
Computation, as illustrated in Figure 3. These techniques aim to enhance the capabilities of SSMs in long-range
linear-time sequence modeling. In particular, the initialization strategy establishes a coherent hidden state matrix,
effectively facilitating long-range memory. Then, the Selection Mechanism empowers SSMs to acquire content-aware
representations. Lastly, Mamba crafts two hardware-aware computation algorithms, Parallel Associative Scan and
Memory Recomputation, to enhance training efficiency.

3.1.1 HiPPO-based Memory Initialization. Modeling and learning from sequential data represent foundational
challenges in contemporary machine learning, forming the bedrock for various tasks, including language modeling,
speech recognition, and video processing. A fundamental component for modeling intricate and long-term temporal
dependencies lies in memory, encompassing the ability to store and integrate information from preceding time steps [73].
Similar to RNNs, preserving and forgetting the historical hidden states (i.e., the matrix A) plays a critical role in SSMs to
achieve satisfying performances. In previous structured state space sequence models (SSMs), there have been suggestions
for special initializations, especially in the case of complex-valued models. These special initializations have proven
beneficial in various scenarios, including situations with limited data availability. Similarly, Mamba focuses primarily on
the initialization of the hidden state matrix A to capture complex temporal dependencies. This is accomplished through
the utilization of the HiPPO theory [56] with an innovative scaled Legendre measure (LegS), ensuring a comprehensive
consideration of the complete historical context rather than a limited sliding window. To be specific, the HiPPO-LegS
Manuscript submitted to ACM
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assigns uniform weight to all historical data points, which can be expressed as:

AHiPPO
𝑛𝑘

= −


(2𝑛 + 1)

1
2 (2𝑘 + 1)

1
2 if 𝑛 > 𝑘

𝑛 + 1 if 𝑛 = 𝑘

0 if 𝑛 < 𝑘

, (16)

where 𝑛 is the number of polynomials, and 𝑘 denotes the particular discrete time steps. Building upon the HiPPO theory,
Mamba introduces two simple initialization methods for the complex and real cases, i.e., S4D-Lin and S4D-Real [57], as
presented in

A𝑑𝑛 = −


1
2 − 𝑛𝑖 S4D-Lin

𝑛 + 1 S4D-Real
, (17)

where 𝑛 is the 𝑛-th element of A for all input dimensions 𝑑 = 1, 2, ..., 𝐷 . Given such an initialization, the model can learn
long-dependent memory that experiences smaller degradation of newer steps and larger degradation of older steps
by compressing and reconstructing the input information signal. According to the formulas, HiPPO-LegS possesses
advantageous theoretical properties: it remains consistent across input timescales and offers rapid computation [56].
Additionally, it has bounded gradients and approximation errors, facilitating the parameter learning process.

3.1.2 Selection Mechanism. Conventional state space models are unable to produce personalized outputs based on
specific model inputs (i.e., the content-aware modeling ability) due to the property of Time Invariance. To provide SSMs
with such a capability similar to the attention mechanisms, Mamba designs a time-varying selection mechanism that
parameterizes the weight matrices according to model input. Such innovation empowers SSMs to filter out extraneous
information while retaining pertinent details indefinitely. Formally, the selection mechanism involves setting the
interval Δ, and matrices B, C as functions of the input x ∈ R𝐵×𝐿×𝐷 , which can be formulated as:

B → SB = WBx, (18)

C → SC = WCx, (19)

Δ → SΔ = 𝜏Δ · BroadCast𝐷 (WΔx), (20)

where SB ∈ R𝐵×𝐿×𝑁 , SC ∈ R𝐵×𝐿×𝑁 , and SΔ ∈ R𝐵×𝐿×𝐷 are the selective space matrices that function of the input to
achieve content-aware modeling. 𝐵, 𝐿, 𝐷 , and 𝑁 represent the batch size, input length, input feature size, and hidden
channel number, respectively. Notably, WB ∈ R𝑁×𝐷 , WC ∈ R𝑁×𝐷 , and WΔ ∈ R𝐷×1 are the selection weights (i.e.,
linear parameterized projections) for corresponding components, and BroadCast𝐷 means to broadcast the result to
all the dimensions 𝑑 = 1, 2, .., 𝐷 . Subsequently, the selective SSMs undergo discretization using a common statistical
technique, Zero-Order Hold (ZOH) [138], as presented in

A → SA = exp(SΔA), (21)

B → SB = (SΔA)−1 (exp(SΔA) − I) · SΔS𝐵, (22)

where SA ∈ R𝐵×𝐿×𝐷×𝑁 and SB ∈ R𝐵×𝐿×𝐷×𝑁 are the selective state transition matrix and the input matrix, respectively,
which become the functions of input x. By doing so, the discrete SSM has changed from time-invariant to time-varying
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(i.e., content-aware) as

y = SSM(A,B,C) (x), (23)

which generates output y ∈ R𝐵×𝐿×𝐷 depending on the input x. Note that the time-varying selection mechanism in
Mamba has a similar structure to the attention mechanism in Transformer, i.e., both perform operations based on inputs
and their projections, which allows Mamba’s SSM to achieve a flexible content-aware modeling. Nevertheless, it loses
the equivalence to convolutions, which negatively impacts its efficiency.

3.1.3 Hardware-aware Computation. The selection mechanism is crafted to surpass the limitations of linear time-
invariant models. Still, it challenges efficient training: SSMs’ convolutional kernels become input-dependent, resulting in
the inability to perform parallel computations. To tackle the problem, Mamba utilizes two computation techniques, i.e.,
Parallel Associative Scan (also called Parallel Prefix-Sum) [64] and Memory Recomputation. First, the Parallel Associative
Scan leverages the property of linear associative computation and the parallelism of modern accelerators (GPU and TPU)
to perform the calculation of selective SSMs in a memory-efficient manner. More specifically, the parallel associative
scan reduces the computation complexity of model training from O(𝑁 2𝑑) to O(𝑁 /𝑡). At its core, the scan revolves
around constructing a balanced binary tree on the given input and sweeps it to and from the root. In other words, the
parallel associative scan begins by traversing from the leaves to the root (i.e., Sweep-Up), creating partial sums at the
internal nodes of the tree. Then, it reverses the traversal, moving from the root back up the tree to construct the whole
scan using the partial sums (i.e., Sweep-Down).

On the other hand, Mamba leverages the traditional approach of recomputation to diminish the overall memory
demand for training selective SSM layers. In particular, Mamba abstains from storing intermediate states of size (𝐵, 𝐿,
𝐷 , 𝑁 ) during the forward pass of the Parallel Associative Scan to prevent memory expansion. Instead, it recomputes
those intermediate states in the backward pass for gradient computation. By doing so, recomputation sidesteps the
necessity of reading 𝑂 (𝐵𝐿𝑁𝐷) elements between GPU memory cells. In addition to optimizing the memory needs
of the scan operation, Mamba-1 extends its use of recomputation to enhance the efficiency of the entire SSM layer.
This optimization encompasses projections, convolutions, and activations, which typically demand significant memory
resources but can be rapidly recomputed.

3.2 Mamba-2: State Space Duality

Transformers, which have played a crucial role in the success of deep learning for various areas, have inspired the
development of various techniques, such as Parameter-efficient Fine-tuning [95], Catastrophic ForgettingMitigation [96],
and Model Quantization [195], aimed at improving model performance from diverse perspectives. To enable state space
models to access and benefit from the valuable techniques initially developed for Transformers, Mamba-2 [29] have
introduced a comprehensive framework called Structured State-Space Duality (SSD), which establishes theoretical
connections between SSMs and different forms of attention. Formally,

y = SSD(A,B,C) (x) = Mx, (24)

whereM denotes the matrix form of SSMs that uses the sequentially semi-separable representation, andM𝑗𝑖 = CT
𝑗
A𝑗 :𝑖B𝑖 .

Notably, C𝑗 and B𝑖 represent the selective space state matrices associated with input tokens x𝑗 and x𝑖 , respectively.
A𝑗 :𝑖 denotes the selective matrix of hidden states corresponding to the input tokens ranging from 𝑗 to 𝑖 . In essence, SSD
demonstrates that both the attention mechanism used by Transformers and the linear time-variant system employed in
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Fig. 4. The block architectures of Mamba-1 and Mamba-2.

SSM can be seen as semi-separable matrix transformations. Furthermore, Dao and Gu [29] also proves that the selective
SSM is equivalent to a structured linear attention mechanism implemented with a semi-separable masking matrix.

Based on SSD, Mamba-2 has devised a more hardware-efficient computation through a block decomposition matrix
multiplication algorithm. Specifically, by viewing state space models as semi-separable matrices through the matrix
transformation, Mamba-2 decomposes the computation into matrix blocks, in which diagonal blocks represent intra-
chunk computations. In contrast, the off-diagonal blocks represent inter-chunk computations factored through the
SSM’s hidden state. This approach enables Mamba-2 to achieve a 2-8× faster training process than Mamba-1’s parallel
associative scan while remaining competitive with Transformers.

3.3 Mamba Block

In this subsection, we provide a summary of the block design for Mamba-1 and Mamba-2. Figure 4 illustrates the
comparison of these two architectures. Mamba-1 is motivated by an SSM-centric point of view where the selective
SSM layer is tasked with conducting a map from input sequences X to Y. In this design, the linear projections of (A, B,
C) are applied after the initial linear projection that creates X. The input tokens and state matrices are then passed
through the selective SSM cell, utilizing the parallel associative scan, to produce the output Y. After that, Mamba-1
employs a skip connection to encourage feature reuse and alleviate the degradation problem often occurring during
the model training process. Finally, the Mamba model is constructed by stacking this block interleaved with standard
normalization and residual connections.

As for Mamba-2, it introduces the SSD layer aiming to create a map from [X, A, B, C] to Y. This is achieved by
simultaneously processing [X, A, B, C] with a single projection at the beginning of the block, similar to how standard
attention architectures generate the Q, K, V projections in parallel. In other words, the Mamba-2 block simplifies
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the Mamba-1 block by removing sequential linear projections. This enables faster computation of the SSD structure
compared to the parallel selective scanning in Mamba-1. Additionally, a normalization layer is added after the skip
connection, aiming to improve training stability.

4 Advancements in Mamba Models

State Space Models and Mamba have been recently explored and become one promising alternative as the foundational
model backbone. While Mamba demonstrates proficiency in natural language processing, it still encounters challenges,
such as memory loss, generalization to diverse tasks, and inferior capability to capture complex patterns to Transformer-
based language models. To overcome these challenges, plenty of efforts have been made to improve the Mamba
architecture. Existing research studies primarily concentrate on modifying the block design, scanning mode, and memory

management aspects. This section will introduce several vital techniques from these three aspects, and a summary of
related studies is presented in Table 1.

Table 1. Summary of Existing Studies on Improving the Mamba Model.

Modules Methods Classes Representative References

Block

Integration

Transformer [65, 111, 141, 142, 200]
Convolutional Neural Network (CNN) [53, 107, 107, 161, 187, 204, 213, 214]

Graph Neural Network (GNN) [9, 103, 115, 178, 203]
Recurrent Neural Network (RNN) [32, 76, 170]
Spiking Neural Network (SNN) [8, 106]

Substitution
U-Net [30, 71, 84, 110, 118, 125, 152, 153, 157, 163, 179, 180]

Diffusion Models [47, 49, 136, 187, 209]
Others [19, 101]

Modification
Mix-of-Expert [5, 111]

K-way/Parallel Structure [79, 113, 177, 193, 235]
Register [179, 202]

Scan

Flatten

Bidirectional Scan [87, 101, 105, 234]
Sweeping Scan [121, 188, 214]
Continuous Scan [66, 75, 201]
Efficient Scan [139, 197]

Stereo
Hierarchical Scan [12, 24, 26, 63, 162, 180]

Spatiotemporal Scan [21, 102, 205, 207]
Hybrid Scan [10, 30, 33, 53, 68, 163]

Memory Initialization [36], Compression [123, 134], Connection [67, 149]

Others Autoregressive Pretraining [150], Explainability [83]

4.1 Block Design

The design and structure of the Mamba block have a significant impact on the overall performance of Mamba models,
making it an emerging research focus. As illustrated in Figure 5, based on different approaches to constructing new
Mamba blocks, existing research can be categorized into three categories: a) Integration methods aim to integrate
the Mamba block with other well-known models, so as to strike a balance between effectiveness and efficiency; b)
Substitution methods attempt to utilize Mamba block as a substitution for main layers in advanced model frameworks;
and c) Modification methods focus on modifying the components within the classical Mamba block. Accordingly, we
will present a detailed review of these methods in the following subsections.
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Fig. 5. Representative examples of improved Mamba models based on the perspective of block design: (a). Integration methods
combine orthogonal architectural designs (e.g., Transformer) with Mamba, leading to enhanced model performance and increased
throughput, all while upholding a manageable memory footprint [141, 200]; (b). Substitution methods enhance the learning capabilities
of standard learning frameworks (e.g., UNet) by integrating the Mamba block as a substitute for their primary layers [110, 214]; (c).
Modification methods employ cutting-edge techniques, such as Mix-of-Expert (MoE), to refine the Mamba block [111].

4.1.1 Integration. GivenMamba’s exceptional ability to capture long-term dynamics, it has been extensively integrated
with other models, leveraging their own strengths to deliver a robust framework tailored to specific scenarios. The
integration specifically encompasses advanced models like Transformers, Convolutional Neural Networks (CNNs),
Graph Neural Networks (GNNs), Recurrent Neural Networks (RNNs), and Spiking Neural Networks (SNNs). Specific
examples are described below.

• Transformer-based models have exhibited remarkable performance in numerous tasks, but their quadratic compu-
tational complexity still hampers them during inference process [58]. In the pursuit of efficient generation, some
researchers have proposed incorporating Mamba blocks with Transformer-based models. For example, Jamba [111]
combines blocks of Transformer and Mamba layers to tackle long-content Natural Language Processing tasks, cap-
italizing on the advantages of both model families. The Attention-Mamba hybrid model demonstrated superior
performance compared to the standalone Transformer and Mamba models, achieving better throughput than the
vanilla Transformer model. Mambaformer [200] utilizes the hybrid framework to forecast multiple time series,
including exchange rates, hourly electricity consumption, and power load, which internally combines Mamba blocks
and Transformer layers for long- and short-range dependencies, respectively. Due to the integration of Mamba and
Transformer, Mambaformer outperforms Transformer-based predictors in long-short range time series forecasting.

• CNN-based methods are constrained by local receptive fields, resulting in suboptimal performance capturing global
and long-range semantics [55]. Known for the superior capability of state space models to learn long-range patterns,
some studies [107, 187, 204] have explored the potential of utilizing Mamba blocks to enhance CNN-based models,
especially in the field of computer vision. For instance, MedMamba [214] and nnMamba [53] showcase how the
integration of visual Mamba blocks improves the performance of CNNs in image analysis tasks.

• GNN has demonstrated promising potential in capturing neighboring relationships through message-passing mech-
anisms, where information is propagated over a connection graph through stacked layers. Nonetheless, these
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models face a significant limitation known as over-smoothing [20], particularly when attempting to capture high-
order adjacency signals. To tackle such a challenge, Mamba has been employed for graph representation learn-
ing [103, 115, 178, 203]. For example, Graph Mamba [9] reformulates graph-structured data into sequential tokens in
a particular order and leverages a selective SSM layer within the Mamba block to construct a novel Graph Mamba
Network (GMN) architecture, which achieves superior graph representation learning capabilities, particularly in the
datasets that requires high-order dependencies between nodes.

• RNN-based models have yielded outstanding results in capturing temporal dynamics. Nevertheless, RNNs still face
significant challenges, including time-consuming recurrent training and limitations in memory capacity for hidden
states. Inspired by the emergence of recent Mamba-based architectures, some researchers have developed a fusion
of Mamba blocks and RNNs. For instance, VMRNN [170] achieves state-of-the-art performance in spatio-temporal
forecasting while minimizing floating-point operations (FLOPs) compared to recurrent-based and recurrent-free
methods. It accomplishes this by introducing a novel recurrent unit that combinesMamba blocks with Long Short-Term
Memory (LSTM).

• SNN has been recently proposed as a promising network architecture inspired by the behavior of biological neurons in
the brain: transmitting knowledge between neurons through discrete spikes. One of the key advantages of SNNs lies on
their potential for low-power implementation, as they can exploit the sparse and event-driven nature of neural activity.
Motivated by the energy-efficient implementation of SNNs and SSMs’ superior long-range learning capabilities,
pioneering studies have delved into integrating these two methods. For example, SpikeMba [106] combines them to
handle confidence bias towards prominent objects and to capture enduring dependencies within video sequences.
Through extensive evaluations, the authors claim that integrating these two models improves the effectiveness of
temporal video grounding tasks, precisely moment retrieval and highlight detection.

4.1.2 Substitution. Inspired by the outstanding capabilities of the selective SSM in efficient computation and long
sequence learning, the adoption of Mamba modules to replace critical components in classical modeling frameworks
such as U-Net [151] and Diffusion Model [70] has attracted a lot of attention. By introducing the selective SSM layer,
these methods achieve long-range learning and efficient computation for their specific tasks. Below, we demonstrate
instances of substitution using the Mamba module, specifically for advanced frameworks such as U-Net and Diffusion
models.

• U-Net. On the one hand, many efforts [110, 163, 179, 180] have been made to synergize U-Net with Mamba’s capability
in capturing intricate and broad semantics, so as to advance model performance in computer vision tasks. For example,
Mamba-UNet [179] utilizes Visual Mamba blocks exclusively to construct a U-Net-like model (i.e., an encoder-decoder
model infused with skip connections) for medical image segmentation. Their evaluation demonstrates that Mamba-
UNet surpasses several U-Net variations, which can be attributed to the efficacy and efficiency of Mamba blocks in
handling long-range patch sequences.

• Diffusion Model. On the other hand, some endeavors [47, 49, 136] have been undertaken to build a novel type of
diffusion model, Diffusion State SpaceModel (DiS), which replace the typical backbone (e.g., CNNs, Attentions, U-Nets)
with a state space backbone. Given the remarkable efficiency and efficacy of Mamba blocks in accommodating long-
range dependencies, DiS is distinguished by generating longer sequences using diffusion models [47]. For example,
Oshima et al. [136] propose a Mamba-based diffusion model that substantially decreases memory consumption for
long video sequences, while still maintaining competitive performance metrics when compared to Transformer-based
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models. Moreover, MD-Dose [49] and P-Mamba [209] construct noise predictors using Mamba blocks in the backward
process of diffusion models, ultimately generating specific targets for medical image processing.

• Others. Besides the U-Net and Diffusion Models, there are a few substitutions. For example, Res-VMamba [19] adopts
Visual Mamba blocks in a residual learning framework for food category classification. Furthermore, SPMamba [101]
adopts the TF-GridNet [189], a recently developed time-frequency model, as its base architecture followed by
succeeding the Transformer components with bidirectional Mamba blocks. This adaptation enable the model to
encompass a wider scope of contextual information efficiently for the task of speech separation.

4.1.3 Modification. Apart from Integrating and Substituting methods that directly employ the Mamba block, some
other efforts have been made to modify the Mamba block with the aim of enhancing its performance in different
scenarios. For example, Jamba [111] borrows the conception of Mix-of-Experts (MoE) [46, 82] to enable their hybrid
(Transformer-Mamba) decoder-only model to be pretrained with far less compute and allow flexible objective-specific
configurations. Notably, the Jamba model (56B available parameters, 12B active parameters, 4GB KV cache) requires a
32x smaller KV cache compared to a representative Transformer-based language model, LLaMA-2-7B (6.7B available
parameters, 12B active parameters, 128GB KV cache), while providing more extensive available and active parameters.
This allows Jamba to swallow a context length of 140K on a single A100 GPU (80GB), seven times the length supported
by LLaMA-2-70B. In addition to MoE, some studies propose modifying the SSM layer into a K-way structure, which
involves processing model inputs using parallel SSM cells, allowing for capturing information and knowledge from
multiple perspectives. For example, Sigma [177] develops a novel Mamba-based visual encoder that handles multimodal
inputs by utilizing parallel SSM layers. UltraLight VM-UNet [193] proposes a vision Mamba layer with parallel SSM
cells that processes deep features in different channels. To recap, by implementing such modifications (i.e., K-way,
MoE), these Mamba-based models gain enhanced learning capabilities, particularly in processing multimodal inputs
and fast adapting to multiscale tasks. In addition, a pioneering study, Mamba® , has introduced a novel approach that
suggests incorporating registers evenly within the visual input tokens before passing the inputs through the SSM layers.
This modification aims to enhance the representation of the sequence direction of image patches, thereby enabling the
unidirectional inference paradigm of the Mamba block to be applicable to visual tasks. Despite these successes, the
exploration of modifying Mamba blocks remains a promising yet under-explored area.

4.2 Scanning Mode

The parallel associative scan operation serves as a crucial component within the Mamba model, which aims to address
the computation problem caused by the selection mechanism, accelerate the training process, and reduce memory
requirements. It achieves this by leveraging the linear property of time-varying SSMs to design kernel fusion and
re-computation at the hardware level. However, Mamba’s uni-directional sequence modeling paradigm hinders a
comprehensive learning process for various data, such as images and videos. To mitigate this issue, several studies have
focused on designing efficient scanning methods to enhance model performance and facilitate the training process of
Mamba models. As shown in Figure 6, existing studies that concentrate on developing the scanning mode techniques
can be categorized into two classes: 1) Flatten Scan approaches process model inputs from a flat perspective of token
sequence; and 2) Stereo Scan methods scan model inputs across dimensions, channels, or scales.

4.2.1 Flattening Scan. Flattening scan refers to the process of flattening the model input into token sequences
and scanning them accordingly from different directions. This type of scanning is commonly employed for both
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token sequences and scanning them accordingly from different directions, and Stereo Scans (d-e) process inputs from additional
perspectives, capturing a broader spectrum of knowledge compared to flatten scan methods.
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one-dimensional (e.g., time series) and two-dimensional (e.g., image) data. In this section, we further categorize it into
four classes, namely Bidirectional Scan, Sweeping Scan, Continuous Scan, and Efficient Scan.

• Bidirectional Scan. Borrowing the conception of bidirectional recurrent neural networks (Bi-RNNs) [155], Visual
Mamba [234] introduces a scanning method for visual data, called Bidirectional Scan (Bi-Scan), which involves
processing input tokens using simultaneous forward and backward SSMs, thus enhancing the model capacity for
spatially-aware processing. Recently, a number of studies have leveraged the Bi-Scan method to facilitate the learning
abilities of their Mamba-based models [105]. For example, DPMamba [87] and SPMamba [101] have both leveraged
a pair of dual-path (forward and backward) selective SSMs to model the dependency of speech signals, enabling a
bidirectional knowledge processing for speech separation. Such notable successes can be attributed to the effectiveness
of Bi-Scan and its ease of deployment.

• Sweeping Scan. As illustrated in Figure 6, the Sweeping Scan technique processes the model inputs in a specific
direction, analogous to a cleaner meticulously sweeping a floor [188, 214]. For instance, Cross-Scan [121] entails
dividing the input image into patches and subsequently flattening it along four distinct paths, which is regarded as a
fusion of two bidirectional scans. By adopting these complementary traversal paths, Cross Scan enables each patch
in the image to efficiently integrate information from its neighbors in different directions, thereby facilitating the
establishment of informative, receptive fields. Omni-Scan [163, 227] incorporates the modeling of image information
flows from multiple directions, e.g., 2 (forward and backward) × 4 (left-right, top-bottom, top right-bottom left, top
left-bottom right). Such a strategy augments the global modeling capability of contextual information in various
directions, enabling the extraction of comprehensive global spatial features.

• Continuous Scan. To ensure the continuity of input sequences, Continuous Scan techniques scan the adjacent
tokens between columns or rows [66], as shown in Figure 6. For example, in order to better cope with 2D spatial
inputs, PlainMamba [201] introduced a continuous scanning approach, known as Continuous Scan, which scans the
adjacent tokens between columns (or rows), instead of traveling to the opposite tokens in Cross Scan. Moreover,
Hilbert Scan [66] travels a sinuous path based on the Hilbert matrix. Based on their evaluation results, it can be
inferred that enhancing the semantic continuity of input tokens leads to superior performance in various visual
recognition tasks for Mamba-based models.

• Efficient Scan. In contrast to the aforementioned scanning methods, which focus on achieving a more comprehensive
input modeling, efficient scanningmethods aim to accelerate the training and inference process. Generally, the efficient
scan separates the given input into several parts and processes them in parallel, thus reducing computational time.
For example, Efficient-2D Scan [139] proceeds images by skipping patches, thus reducing four times of computational
demands while preserving global feature maps. Moreover, Gao et al. [51] introduce an effective bi-directional subspace
scanning scheme within their Mamba framework. This scheme is designed to capture long-term spatial-angular
correspondences efficiently for 4D light field super-resolution tasks. Specifically, it decomposes the patch sequences
into two parts and processes them through two bi-directional scanning schemes. By doing so, the scanning method
lowers the input length and addresses the long-term memory issues without sacrificing the complete 4D global
information.

4.2.2 Stereo Scan. By modeling inputs from additional perspectives, stereo-scan methods excel in capturing a broader
spectrum of knowledge during the scanning process when compared to flattened scan methods. This enhanced capability
allows for a more thorough comprehension of model inputs. To be specific, these methods can be classified into three
primary categories: Hierarchical Scan, Spatiotemporal Scan, and Hybrid Scan. The Hierarchical Scan processes
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the input from different levels, while the Spatiotemporal Scan considers input patterns from both temporal and spatial
perspectives. Additionally, Hybrid Scan combines multiple scanning methods to leverage the benefits of different scan
techniques.

• Hierarchical Scan methods involve employing different kernel sizes of scanning to capture the semantic knowledge
from global to local or from macro to micro perspectives [26, 63, 162, 180]. For example, a Mamba-in-Mamba
hierarchical encoder is proposed by [24] for infrared small target detection, combining inner and outer selective SSM
blocks. The inner one is specifically tailored to capture the interplay among visual patches for local pattern extraction.
Conversely, the outer block is designed to characterize the relationship between visual sentences to capture global
features. HiSS [12] divides an input sequence into chunks and models the chunk features hierarchically for continuous
sequential prediction. The chunks are first processed by a low-level SSM cell, and the processed features are mapped
into an output sequence by a high-level SSM block.

• Spatiotemporal Scan. Driven by the prevalence of dynamic systems in the real world, there has been a growing
interest in spatiotemporal scanning methods to enhance the performance of Mamba block [205, 207]. For instance,
VideoMamba [102] expands the original 2D scan for images into two 3D scans: spatial-first scanning and temporal-first
scanning. Combining these two scanning approaches, VideoMamba demonstrates exceptional efficiency in handling
long, high-resolution videos. Additionally, ChangeMamba [21] integrates three spatiotemporal scanning mechanisms
(sequential modeling, cross modeling, and parallel modeling) to enable contextual information interaction among
multi-temporal features for remote sensing change detection.

• Hybrid Scan. In the pursuit of comprehensive feature modeling, many efforts have focused on combining the
advantages of different scanning methods [30, 33, 53, 163, 229], so-called Hybrid Scan. For example, Mambamixer [10]
presents Switch of Scan that dynamically employs a set of image scanning methods, namely Cross-Scan, Zigzag
Scan, and Local Scan, to traverse image patches. Mambamixer also introduces a dual selection mechanism to mix
information across tokens and channels. By doing so, they show competitive performance with other vision models.
Pan-Mamba [68] introduces two scanning methods built upon the Mamba architecture: channel swapping scan and
cross-modal scan. By incorporating these two scanning approaches, Pan-Mamba enhances its capabilities in efficient
cross-modal information exchange and fusion for image pan-sharpening.

4.3 Memory Management

Like RNNs, the memory of hidden states within state space models effectively stores information from previous steps,
thereby playing a crucial role in SSM’s overall functionality. While Mamba has introduced the HiPPO-based method for
memory initialization [55], challenges still exist in the memory management of the SSM cell, including transferring
hidden information between layers and achieving lossless memory compression. To this end, a handful of pioneering
studies have proposed different solutions, including memory initialization, compression, and connection. For example,
Ezoe and Sato [36] have attempted to refine the initialization process of selective SSMs by using a balanced truncation
method during model retraining. Moreover, DGMamba [123] introduces a Hidden State Suppressing method to bolster
the domain generalization capabilities of the hidden states within State Space Models. This method works to alleviate the
negative effects stemming from these hidden states, thereby narrowing the gap between hidden states across different
domains. On a similar note, DenseMamba [67] has put forth a dense connection method to enhance the propagation of
hidden information between layers in SSMs. This strategy aims to mitigate memory degradation and preserve detailed
information for output generation by selectively integrating hidden states from shallower layers into deeper ones.
Manuscript submitted to ACM



A Survey of Mamba 19

5 Adapting Mamba to Diverse Data

TheMamba architecture represents an extension of selective state space models, which possesses fundamental properties
of recurrent models that make it well-suited as general foundation models operating on sequences like text, time series,
speech, and more. Meanwhile, recent pioneering studies have extended the utilization of the Mamba architecture
beyond sequential data, encompassing domains such as images and graphs, as depicted in Figure 7. These studies aim
to harness Mamba’s remarkable capabilities in capturing long-range dependencies while leveraging its efficiency in
learning and inference processes. In this section, we therefore aim to investigate the emerging techniques that adapt
Mamba to various types of data.
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Fig. 7. Representative strategies exist for adapting Mamba to diverse types of data. (a-e) The Mamba architecture, imbued with
essential characteristics of recurrent models, serves as an ideal foundational model for handling sequences like language, time series,
and speech. (f-h) To address non-sequential data, a common approach involves segmenting or sampling the data into discrete tokens
and organizing them into sequences following a defined rule. Additionally, Mamba exhibits the capability to process multimodal data
by either concatenating their respective sequences or projections.

Table 2. Summary of Mamba-associated research in different types of data.

Category Data Typical Tasks Representative References

Sequential Data Language Long-Context Language Modelling [5, 10, 12, 58, 67, 111, 134, 143, 160]
Video Long Video Generation [6, 102, 106, 122, 136, 205, 235]
Time Series Long-Term Forecasting [3, 3, 4, 108, 153, 200, 213, 230]
Speech Speech Separation [1, 27, 87, 101]
Motion Continuous Human Motion Understanding [182, 215, 225]

Non-Sequential Data Image High-Resolution Medical Vision [21, 23, 114, 152, 173, 179, 179, 214, 234]
Graph Large Graph Learning [9, 41, 77, 81, 115, 178, 208]
Point Cloud Efficient 3D Point Cloud Restoration [62, 63, 109, 210, 211, 220, 232]

Multimodal Data Vision-Languge Visual and Linguistic Awareness [117, 145, 182, 192, 206]
Multimodality Semantic Recognition [33, 177]
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5.1 Sequential Data

Sequential data refers to data gathered or organized in a particular order, where the order of the data points holds
significance. To explore the potential of utilizing Mamba as foundation models for tasks concerning sequential data, we
provide a comprehensive review presented in the subsequent sections, which cover various sequential data including
natural language, video, time-series, speech, and human motion.

5.1.1 Natural Language. As one of the most representative architectures, Mamba performs content-based reasoning
while ensuring efficiency, which is considered a promising alternative for the backbone of large language models to
address Transformers’ computational inefficiency on long sequences. Building upon this insight, many studies have
explored the potential of Mamba for various downstream tasks in natural language processing (NLP) [10, 12, 67, 134].
For example, MambaByte [181] is proposed to utilize Mamba on byte sequences, aiming to leverage the advantages of
Mamba in capturing long-range dependencies for token-free language models. Their evaluations show that MambaByte
avoids the inductive bias of subword tokenization and outperforms state-of-the-art subword Transformers on long-term
language modeling tasks. Besides, Jamba [111] and BlackMamba [5] incorporate the concept of Mix-of-Experts (MoE)
to enhance Mamba’s performance on language processing by integrating the linear-complexity generation from SSMs
with the rapid and economical inference capabilities offered by MoE.

5.1.2 Video. The core objective for video understanding and generation lies in learning spatiotemporal representations,
which inherently presents two formidable challenges: the large spatiotemporal redundancy within short video clips and
the complex spatiotemporal dependencies among long contexts [6, 122]. In the pursuit of addressing both challenges
simultaneously, Mamba stands out with its capabilities in distinguishing short-term actions and interpreting long
videos [106, 136, 205, 235]. For instance, VideoMamba [102] first projects the input videos into a set of non-overlapping
spatiotemporal patches through 3D convolution and then utilizes stacked bidirectional Mamba blocks to encode these
patches into vectorized representations for downstream tasks like video understanding and generation.

5.1.3 Time-Series. As typical sequential data, time-series data is ubiquitous in various facets of our lives, including
stock market analysis, traffic modeling, and weather forecasting [147, 230]. Motivated by the recent progress on
Mamba in modeling long-range sequences, many efforts have been made to investigate its potential for time-series
data [3, 4, 108, 200]. For example, TimeMachine [3] harnesses Mamba to capture enduring patterns in multivariate
time-series data, ensuring linear-complexity computation and minimal memory footprints for streamlined time-series
processing. Moreover, Mambaformer [200] combines selective SSM and Attention layers for the long- and short-term
forecasting of weather, traffic flow, and more.

5.1.4 Speech. Speech specifically refers to the vocalized form of human communication that involves vocalized
expressions using specific phonetic sounds, words, grammar, and intonation patterns [1]. Recently, in the realm of
speech-related tasks, researchers [27] have made significant progress in developing Mamba-based models to tackle
the emerging challenges encountered by existing model architectures, such as RNNs and Transformers. For example,
SPMamba [101] and DPMamba [87] utilize bidirectional Mamba modules to capture a broader range of contextual
information for speech separation, demonstrating a substantial improvement of 13% in model performance and a 566%
reduction in computational complexity compared to a Transformer-based baseline when addressing speech separation
tasks.
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5.1.5 Motion. Human motion understanding and generation stand as a significant pursuit in a broad range of practical
applications, including computer animation, game development, and robot manipulation. However, semantic actions
that occur infrequently within lengthy motion sequences make long-range motion modeling difficult. To address this
issue, several studies have proposed the use of Mamba to capture spatiotemporal patterns in motion sequences [182].
For instance, Motion Mamba [225] proposes a hybrid Mamba model, which leverages a hierarchical SSM layer to capture
temporal patterns and introduces a bidirectional SSM layer to learn spatial knowledge, preserving motion consistency
between frames. Based on the comprehensive experiments, the Mamba-based model outperforms representative
diffusion-based methods in human motion generation tasks, achieving a 50% FID improvement and four times faster
performance. Additionally, MambaMOS [215] designs a motion-aware state space model that focuses explicitly on
capturing variations in motion between consecutive time steps, which further emphasizes the exceptional capabilities
of Mamba in achieving high-quality, lengthy sequence motion modeling.

5.2 Non-Sequential Data

Non-sequential data differs from sequential data by not adhering to a specific order. Its data points can be organized
or accessed in any sequence without significantly impacting the data’s meaning or interpretation [80]. This absence
of inherent order presents difficulties for recurrent models such as RNNs and SSMs specifically designed to capture
temporal dependencies in data. Surprisingly, Mamba, representing SSMs, has shown outstanding success in efficiently
dealing with non-sequential data in recent developments. In this section, we will review relevant studies about how
Mamba effectively handles non-sequential data, including images, graphs, and point clouds.

5.2.1 Image. As one of the most prevalent modalities, image data forms the foundation of various computer vision
applications, e.g., face recognition, medical vision [214], and remote sensing [21, 23]. Drawing inspiration from the
success of Mamba in sequence modeling, there exists an intriguing opportunity to transfer this accomplishment from
text processing to image analysis. It involves treating an image as a series of patches, potentially paving the way for
new avenues of exploration within the realm of computer vision. Thus, plenty of Mamba-based vision models have
recently been developed to alleviate heavy computational resources and memory pressures while exhibiting competitive
modeling capabilities [114, 152, 179, 179]. For example, Vision Mamba [234] incorporates bidirectional SSM to facilitate
global visual semantic modeling and incorporates positional embeddings for location-aware visual comprehension.
Not requiring attention mechanisms, Vision Mamba matches the modeling capacity of Vision Transformers while
substantially decreasing computation time to subquadratic levels and upholding linear memory complexity. Specifically,
it outperforms the state-of-the-art baseline DeiT [173] in terms of speed, being 2.8× faster, and also presents a remarkable
reduction of 86.8% in GPU memory usage during batch inference for feature extraction on high-resolution images
(1248×1248). Moreover, VMamba [121] introduces 2D Selective Scan (SS2D) that serves as a bridge between 1D array
scanning and 2D plane traversal, enabling Mamba to process visual data effectively.

5.2.2 Graph-structured Data. Graph modeling has found extensive utility in managing complex structures and
relationships, including applications in domains like social networks [41] and molecular interactions [77]. Inspired
by the remarkable advent of language foundation models like ChatGPT, numerous researchers have ventured into
constructing a graph foundation model that can furnish node and edge embeddings for downstream prediction tasks [28].
Due to the powerful capabilities of Mamba in long-range modeling and high efficiency, several pioneering investigations
have embraced the selective State Space Model (SSM) for non-sequential graph data [115]. These studies utilize state
space models to encode context through hidden states during recurrent scans, allowing for input flow control, which
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resembles attention sparsification on graphs, presenting a data-dependent node selection process within graph modeling
contexts [208]. Moreover, Mamba is anticipated to enhance model efficiency during large-graph training tasks.

For example, Graph-Mamba [178] introduces a novel Mamba-based block as a foundational component for graph
modeling. This block combines a graph flattening mechanism with the selection mechanism offered by Mamba,
transforming sub-graphs into node sequences and facilitating input-dependent context filtering, respectively. In a recent
work, Behrouz and Hashemi [9] propose a Graph Mamba Network (GMN), a new graph neural network format based
on selective SSMs. The authors reformulate the selective SSM into a graph learning format and provide theoretical
justification for the power of the proposed network. By addressing the emerging challenges in crucial steps of graph
message passing, GMNs achieve remarkable performance on various aspects, surpassing GNNs and Transformer-based
models in multiple benchmark datasets with diverse graph scales. Furthermore, Huang et al. [81] introduce the Graph
State Space Convolution (GSSC) as a systematic extension of SSMs tailored for graph-structured data. Specifically,
GSSC incorporates distance-based graph convolution kernels into the SSM cell, aiming at enhancing expressive power
and capture long-range dependencies. Through assessments conducted on ten benchmark datasets, the study [81]
underscores the potential of GSSC as a potent and scalable model for graph machine learning.

5.2.3 Point Cloud. Point cloud is a crucial modality in computer vision, with a multitude of practical applications
across domains like robotics, autonomous driving, and augmented reality [62]. Unlike image processing and graph
learning, the analysis of point cloud presents unique challenges stemming from point clouds’ inherent irregularity and
sparsity, a 3D non-structured data. To tackle these challenges, notable advancements have been made in deep learning-
based approaches, with particular emphasis on Transformer-based models [211]. However, the complexity of attention
mechanisms is quadratic, bringing significant computational cost, which is not friendly to low-resource devices. Noted
by the recent advance of State Space Models (SSMs) in handling 1D sequences (e.g., language and speech) and 2D data
(e.g., image and graph), there have been efforts to extend the application of Mamba to 3D point clouds [210]. In general,
these Mamba-based methods for point cloud analysis employ a two-step process [63, 232]. First, the point cloud data is
tokenized into discrete tokens using specific scanning methods. Then, Mamba is utilized to capture the underlying
patterns within these tokens. For instance, PointMamba [109] proposes a hierarchical scanning strategy to encode
local and global information of 3D point cloud and then utilizes plain Mamba as the backbone to extract features from
serialized point tokens without incorporating additional complex techniques. Point Cloud Mamba [220] incorporates
Mamba as the foundational model backbone to significantly reduce memory usage, demonstrating comparable (or
superior) performance compared to Transformer-based counterparts.

5.3 Multimodal Data

Integrating multiple modalities, such as language (sequential data) and images (non-sequential data), offers valuable
and complementary information for artificial intelligence perception and scene understanding. Recently, there has been
significant research attention on Multimodal Large Language Models (MLLMs) that inherit the advanced capabilities of
Large Language Models [192], including powerful language expression and logical reasoning. While Transformers have
been the dominant approach in this field, Mamba has emerged as a strong competitor by demonstrating impressive
performance in aligning mixed-source data and achieving linear complexity scaling in sequence length, which makes
Mamba a promising alternative to Transformers for multimodal learning [117, 206]. For example, Qiao et al. [145] propose
VL-Mamba to explore the utilization of Mamba’s efficient architecture for solving vision-language tasks, utilizing the
pre-trainedMambamodel for language understanding and incorporating a connector module to align visual patches with
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language tokens.Wang et al. [182] propose Text-controlledMotionMamba [182], which leveragesMamba to dynamically
capture global temporal information based on text queries to enhance human motion understanding. Additionally,
Fusion-Mamba [33] and Sigma [177] have tried to fuse complementary information from different modalities such as
thermal, depth, and RGB. Fusion-Mamba focuses on improving object detection, while Sigma aims to enhance semantic
segmentation.

6 Applications

In this section, we introduce several notable applications of Mamba-based models. To provide a comprehensive overview,
we categorize these applications into: Natural Language Processing, Computer Vision, Speech Analysis, Drug Discovery,
Recommender Systems, and Robotics and Autonomous Systems.

6.1 Natural Language Processing

In natural language processing domain, recently someMamba-basedmodels have emerged as alternatives to Transformer-
based models for language modeling [5, 14, 67, 111, 176, 226], especially in applications involving extensive contexts
such as Question Answering Systems and Text Summarization.

6.1.1 Question Answering Systems. Question Answering (QA) involves AI models comprehending, reasoning,
and responding using extensive knowledge bases, enabling coherent and contextually rich conversations, widely
applied in chatbots and virtual assistants. Incorporating context from previous interactions is crucial for accurately
addressing follow-up questions in multi-turn conversations. However, existing models face challenges in inference
speed and computational efficiency, particularly in complex reasoning tasks. This leads to significant memory use and
computational overhead, which limits scalability and real-time application efficiency. To address these limitations, recent
studies have explored Mamba-based models to improve long-term dialogue management in QA Systems [111, 111, 132].
For instance, Mamba-Chat [132] is the first chat language model utilizing a state-space framework. The model maintains
and updates its understanding of dialogues by employing state space representations, ensuring context awareness.
Jamba [111] strategically alternates between Transformer and Mamba layers, incorporating MoE to enhance model
capacity while optimizing parameter utilization. In common sense reasoning and reading comprehension tasks, Jamba
achieves performance comparable to larger Llama-2 models but with fewer parameters, demonstrating efficiency and
effectiveness. Similarly, DenseMamba [67] introduces a novel method to enrich the propagation of hidden information
across layers in SSMs by selectively incorporating hidden states from shallow layers into deeper layers. Compared
to traditional Transformer-based models, this preserves crucial fine-grained information for superior performance in
question-answering tasks. Overall, integrating Mamba-based models shows promising potential to advance QA systems
by improving dialogue management and enhancing performance in complex reasoning tasks.

6.1.2 Text Summarization. Text summarization aims to condense long texts by preserving essential information.
Maintaining coherence and relevance is crucial in this task. Transformer-based models often struggle with long-sequence
dependencies, potentially compromising coherence and relevance. In contrast, Mamba-based models leverage robust
long-sequence processing capabilities, making them well-suited for processing coherent and context-rich text. Their
robust architecture allows them to excel in summarization tasks by accurately capturing and condensing the essence of
extensive documents. For instance, LOCOST [14], based on state space models, processes significantly longer sequences
than sparse attention models. In long document abstractive summarization, LOCOST achieves performance comparable
to the highest-performing sparse transformers of equivalent dimensions while reducing memory usage by up to 50%
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during training and 87% during inference. Additionally, SAMBA [149] integrates Mamba with sliding window attention,
enabling selective sequence compression into recurrent hidden states while retaining precise memory recall through
attention mechanisms. SAMBA achieves a throughput of 3.73 times higher than Transformers when handling input
lengths of 128K, showcasing superior performance in tasks requiring long-context summarization.

6.2 Computer Vision

In addition to NLP applications, Mamba-based models have shown potential in the computer vision domain, representa-
tive applications like Disease Diagnosis and Motion Recognition and Generation.

6.2.1 Disease Diagnosis. In clinical practice, medical images and videos provide critical insights into the morphology
of organs or tissues. Efficient analysis of biomedical objects, such as lesions in large-scale 2D/3D images or videos,
significantly enhances disease diagnosis and clinical treatment. However, CNN-based models like UNet face challenges
in handling long-range dependencies because of their restricted receptive fields. This challenge is intensified by
the typically larger sizes and higher resolution of medical images than natural images. Meanwhile, Transformer-
based algorithms are computationally intensive, limiting their practicality in resource-constrained clinical settings. To
overcome these limitations, numerous studies have adopted Mamba-based models in real medical environments [110,
127, 152, 187]. For instance, U-Mamba [127] and SegMamba [198] both integrate a hybrid CNN-SSM block, merging
the local feature extraction capabilities of convolutional layers with the long-range dependency modeling offered by
SSMs. This hybrid approach outperforms the existing models in tasks such as 3D segmentation of abdominal organs
in CT and MR images, segmentation of instruments in endoscopy images, and segmentation of cells in microscopy
images. Similarly, CMViM [202] addresses challenges in Alzheimer’s disease (AD) diagnostic imaging by leveraging
masked Vim autoencoders and contrastive learning across modalities, achieving the best performance in AD diagnostic
imaging classification. Additionally, ProMamba [196] specializes in polyp segmentation. By incorporating Vision-
Mamba architecture and prompt technology, This model achieves higher accuracy and better generalization than
previous methods. For dynamic medical object segmentation in videos, Vivim [205] effectively compresses long-term
spatiotemporal representations across different scales into sequences using the Temporal Mamba Block. This approach
demonstrates enhanced performance and computational efficiency in disease diagnosis, such as ultrasound breast
lesions segmentation and polyp segmentation in colonoscopy videos.

6.2.2 Motion Recognition and Generation. Motion recognition and generation are critical in motion monitor-
ing [52], computer animation [165], game development [133], and film production [184]. However, transformer-based
models encounter challenges related to computational and memory demands, limiting their applicability in resource-
constrained environments. Additionally, Transformers and GCNs-based models struggle with effectively capturing
long motion sequences and complex spatial-temporal patterns in videos and 4D point clouds. Recent studies have
explored the use of Mamba to address these challenges, leveraging its robust performance and lower computational
demands [18, 105, 224, 225]. For instance, HARMamba [105] utilizes a bidirectional SSM architecture to process data
from wearable sensors, significantly reducing computational load and memory usage while maintaining high accuracy
in real-time human motion recognition. Similarly, Simba [18] integrates Mamba within a U-ShiftGCN framework,
effectively handling longer sequences and complex spatial-temporal interactions, achieving the best results in skeletal
action recognition from videos. Furthermore, Motion Mamba [225] and InfiniMotion [224] are both for motion genera-
tion. Specifically, Motion Mamba [225] utilizes hierarchical temporal Mamba blocks for processing temporal data and
bidirectional spatial Mamba blocks for handling latent poses, ensuring motion consistency across frames and enhancing
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motion generation accuracy within temporal frames. InfiniMotion [224] introduces the Motion Memory Transformer
with Bidirectional Mamba Memory, improving the transformer’s memory capabilities to efficiently generate continuous,
long-duration human motions (up to one hour and 80,000 frames) without overwhelming computational resources.

6.3 Speech Analysis

Speech signals inherently consist of thousands of samples. While this broad temporal context provides rich acoustic
features, it also poses significant computational demands. To process speech signals effectively, several Mamba-based
models have been successfully employed in diverse speech applications, notably in Speech Separation and Tagging and
Speech Enhancement.

6.3.1 Speech Separation and Tagging. Speech separation involves isolating individual speech signals from a multi-
speaker environment. It is critical for enhancing the intelligibility and quality of audio communications. Meanwhile,
audio tagging or classification involves mapping audio samples to their corresponding categories. Both tasks depend
on capturing short-range and long-range audio sequential patterns. Although transformer-based models have been
the leading architecture of these applications, they face significant challenges due to their self-attention mechanisms,
which result in quadratic computational and memory costs. Recently, there has been a shift toward employing state
space models for speech separation [87, 101] and audio tagging [11, 222]. Specifically, DPMamba [87] utilizes selective
state spaces to capture dynamic temporal dependencies in speech signals, encompassing both short-term and long-term
forward and backward dependencies. SPMamba [101] integrates the TF-GridNet model, replacing its transformer
components with bidirectional Mamba modules. DASS [11] integrates knowledge distillation with state-space models,
allowing for tagging sound events in audio files lasting up to 2.5 hours. Meanwhile, MAMCA [222] focuses on Automatic
Modulation Classification (AMC) by introducing the selective state-space model as its backbone, effectively addressing
both accuracy and efficiency challenges associated with long-sequence AMC. By adopting state-space models, these
models demonstrate a qualitative improvement, capturing a broader range of contextual information and enhancing
overall effectiveness, thereby proving the superior scalability of SSMs in handling long durations.

6.3.2 Speech Enhancement. Speech enhancement (SE) aims to extract clear speech components from distorted
signals, producing enhanced signals with improved acoustic characteristics. As a front-end processor, SE is pivotal in
numerous speech applications, including assistive hearing technologies [98], speaker recognition [7], and automatic
speech recognition [129]. Mobile audio devices face challenges due to limited resources. Recent studies have explored
the application of Mamba, leveraging its powerful performance and reduced computational demands in SE tasks [17,
148, 159, 168, 221]. For instance, TRAMBA [168] leverages a hybrid architecture combining Transformers and Mamba
to improve speech quality for mobile and wearable platforms, specifically targeting acoustic and bone conduction. It
achieves a remarkable tenfold reduction in memory consumption compared to current leading models. Additionally,
oSpatialNet-Mamba [148] leverages Mamba for long-term multichannel speech enhancement, achieving outstanding
results for static and moving speakers.

6.4 Drug Discovery

Protein design, molecular design, and genomic analysis are pivotal in advancing drug discovery and biotechnology [100,
156]. Leveraging the MAMBA-based model significantly reduces the complexities of modeling long sequences in these
domains [61, 140, 140, 154, 154]. Specifically, PTM-Mamba [140] and ProtMamba [158] are protein language models
based on the Mamba architecture. PTM-Mamba utilizes bidirectional gated Mamba blocks and structured state space
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models, efficiently processing long sequences while reducing computational demands. ProtMamba is designed to be
homology-aware yet alignment-free, adept at handling extensive contexts across hundreds of protein sequences. Both
models maintain high efficiency and accuracy even with large data sets, providing critical tools for protein design.
Meanwhile, generative molecular design aims to simulate molecules with tailored property profiles from a specific
distribution. However, current models lack the efficiency required to optimize high-fidelity oracles, directly resulting
in low success rates. Saturn [61], applying the Mamba architecture, utilizes its linear complexity and computational
efficiency to surpass 22 competing models in drug discovery. Furthermore, understanding genomes is crucial for
gaining insights into cellular biology. Challenges in genomic modeling include capturing interactions between distant
tokens, considering the impacts of both upstream and downstream regions, and ensuring the complementarity of
DNA sequences. Caduceus [154] and MSAMamba [172], both leveraging the Mamba model, excel in addressing these
challenges. Caduceus, a DNA foundation model, enhances the Mamba architecture with BiMamba and MambaDNA
components for bi-directional modeling and ensuring reverse complement equivariance, significantly outperforming
existing models in long-range genomic tasks. Similarly, MSAMamba [172] addresses the limitations of transformer-based
models for DNAmultiple sequence alignments by implementing a selective scan operation along the sequence dimension.
This design extends the training context length of previous methods by eightfold, allowing a more comprehensive
analysis of extensive DNA sequences.

6.5 Recommender Systems

Recommender Systems arewidely utilized in e-commerce [25, 219, 231] and social networks [38, 39, 43], aiming to capture
users’ evolving preferences and the interdependencies among their past behaviors [40, 228]. Although transformer-
based models have demonstrated effectiveness in recommender systems, they face computational efficiency challenges
because of the quadratic complexity of attention mechanisms, especially when dealing with longer sequences of
behaviors. Recently, several Mamba-based models have been applied to analyze long-term user behavior for personalized
recommendations [16, 115, 166, 185, 203]. For instance, Mamba4Rec [115] pioneers the use of selective state space
models for efficient sequential recommendation, enhancing model performance while maintaining inference efficiency.
Similarly, RecMamba [203] explores Mamba’s effectiveness in lifelong sequential recommendation scenarios (i.e.,
sequence length ≥ 2k), achieving comparable performance to benchmark models while cutting down training time
by 70% and reducing memory costs by 80%. Furthermore, EchoMamba4Rec [185] integrates a bidirectional Mamba
module with frequency-domain filtering to accurately capture intricate patterns and interdependencies within user
interaction data. It demonstrates superior performance over existing models, delivering more precise and personalized
recommendations. Additionally, Mamba4KT [16] is designed explicitly for knowledge tracing in intelligent education,
leveraging the Mamba model to capture enduring correlations between exercises and student knowledge levels. As
educational datasets expand, this method suggests a promising avenue for enhancing prediction accuracy, model
efficiency, and resource utilization in knowledge tracing research.

6.6 Robotics and Autonomous Systems

The main goal of robotics and autonomous systems is to develop models capable of comprehending visual environments
and performing intricate actions. Multimodal Large LanguageModels (MLLMs) currently used in robotics face significant
challenges in two primary aspects: 1) limited capacity for handling intricate tasks requiring advanced reasoning, and
2) substantial computational expenses with fine-tuning and inference tasks. Due to their advantages in inference
speed, memory utilization, and overall efficiency, Mamba-based models are emerging as a promising foundation for
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autonomous and intelligent systems [15, 85, 117], promising superior performance and substantial scalability potential.
For example, RoboMamba [117] integrates a vision encoder with Mamba to create an end-to-end robotic MLLM. This
method aligns visual data with language embeddings by co-training, enhancing the model with visual common sense and
robot-specific reasoning while ensuring efficient fine-tuning and inference capabilities. Similarly, Jia et al. [85] introduce
MaIL, an imitation learning (IL) policy architecture that uses Mamba as a backbone. MaIL bridges the gap between
efficiency and performance in handling sequences of observations. Extensive evaluations of real robot experiments
demonstrate that MaIL provides a competitive alternative to traditional, large, and complex Transformer-based IL
policies.

7 Challenges and Opportunities

The preceding sections have thoroughly surveyed the latest advanced techniques and varied applications associated
with Mamba. However, the studies of Mamba are still in its nascent stages, and there exist considerable challenges and
opportunities ahead.

7.1 Mamba-based Foundation Models

By scaling up the model sizes to the billion level over large-scale mixture-of-source corpora, foundation models (FMs)
exhibit impressive zero-shot learning capabilities, which has enabled FMs to excel in a wide range of general tasks [13].
As a representative example, recent years have witnessed the booming success of Transformer-based large language
models, especially ChatGPT, motivating a growing enthusiasm for exploring foundation models in various domains.
Even though Transformers are the main drivers of the success, they suffer from pressing computation and memory
efficiency issues [171], which come with the exponentially growing training memory proportional to the attention-based
model size and the laboriously auto-regressive decoding during inference. In response to these issues, a promising
alternative backbone, i.e., Mamba [29, 55], for foundation models has recently emerged. Mamba offers the content-aware
learning capabilities of Transformers while scaling the computation linearly with input length, making it effective in
capturing long-range dependencies and enhancing efficiency in both training and inference. Given these advantages,
developing Mamba-based foundation models for specific domains holds great potential, which offers an opportunity to
address the issues faced by Transformer-based models.

7.2 Hardware-Awareness Computation

Foundation models, characterized by their large sizes and intensive matrix operations like matrix multiplications and
convolutions, require cutting-edge hardware such as GPUs and TPUs for high-throughput training and inference. These
advanced hardware enable researchers to work with larger datasets and achieve state-of-the-art performance across
various domains. Nonetheless, the existing foundation models still fall short of fully exploiting the computational
capabilities of the hardware, resulting in limited model efficiency [171]. As a promising alternative for enhancing
computation efficiency, Mamba-1 [55] and Mamba-2 [29] put forth hardware-aware computation algorithms, namely the
Parallel Associative Scan and the Block-decomposition Matrix Multiplication. These algorithms take into account the
inherent characteristics of GPUs and TPUs, including factors such as message transmission between devices, offering a
fresh perspective on addressing the computation efficiency problem. Inspired by this, exploring novel hardware-efficient
algorithms, such as FlashButterfly [48], to optimize hardware utilization offers a promising avenue for conserving
resources and accelerating computation, benefiting not only SSMs but also other architectures like Transformers and
RNNs.
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7.3 Trustworthy Mamba Models

The development of SSMs is expected to bring significant benefits to various industries, including e-commerce, healthcare,
and education. At the same time, being a data-dependent model like many existing architectures, Mamba models could
pose severe threats to users and society [130]. These threats arise from several factors like erratic decision-making,
privacy concerns, and more. Therefore, ensuring trustworthiness in Mamba models is essential across four critical
dimensions [116]: Safety&Robustness, Fairness, Explainability, and Privacy.

7.3.1 Safety&Robustness. Large foundation models have been proven to be highly vulnerable to adversarial per-
turbations, which can jeopardize the safety and robustness of these models when deployed in safety-critical applica-
tions [45, 135, 190]. Meanwhile, Mamba-based models are not exempt from these vulnerabilities [128]. In the pursuit
of being a reliable alternative to Transformer, it is essential to investigate and enhance the safety and robustness of
Mamba-based models. To be specific, the model outputs should be robust to small perturbations in their inputs. One
potential solution could involve automatically pre-processing prompts before feeding them into Mamba-based models.
Additionally, as a representative technique, adversarial machine training [78] can be employed to enhance the safety
and robustness of Mamba models.

7.3.2 Fairness. Large foundation models, trained on extensive datasets, tend to be unintentionally exposed to the
biases and stereotypes present in the extensive training corpus [126], which can can manifest in the generated outputs.
For instance, within the domain of LLMss, the biases can lead to discriminatory responses influenced by user profile
attributes like gender and age, reinforcing stereotypes and unfairly treating specific user groups [86]. While recent efforts
have been made to address the issue of fairness in LLMs, there is still a gap in research regarding the non-discrimination
and fairness of Mamba models. Thus, further exploration and study are necessary to bridge this gap.

7.3.3 Explainability. Deep learning models have often been criticized for their "black-box" nature, and the explain-
ability of deep learning models has emerged as a popular topic in the research community, which indicates the capacity
to comprehend and interpret the decisions or predictions generated by a model [35]. By explaining model predictions,
users can make more informed decisions based on the model’s outputs. To this end, several techniques have been
proposed to provide plausible innate explanations for neural architectures based on attention mechanism [74]. Moreover,
researchers have investigated the capabilities of Transformer-based language models to generate natural language
descriptions to explain their answers [212]. Although an increasing number of studies have attempted to take full
advantage of Mamba, studies on comprehending the functioning of Mamba models are still at an early stage, and further
investigation is still needed.

7.3.4 Privacy. The protection of privacy builds trust between users and Mamba-based models. When users have
confidence that their privacy is respected, they are more likely to engage with the AI systems, share relevant information,
and seek assistance without fear of misusing their data. Thus, this trust is vital for the widespread adoption and
acceptance of Mamba models. One effective strategy for mitigating privacy risks involves cross-verifying the output of
Mamba models and screening sensitive content [93]. Moreover, Federated Learning is poised to bolster privacy during
the training of Mamba models, wherein the model is trained on numerous decentralized edge devices or servers housing
local data samples, without data exchange. This methodology aids in preserving the localization and privacy of the data.
Furthermore, integrating privacy-conscious regularization techniques such as differential privacy constraints during
training shows promise in preventing overfitting on sensitive data.
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7.4 Applying Emerging Techniques from Transformer to Mamba

The Transformer, being the dominant backbone, has led the AI community to develop numerous unique tools aimed
at enhancing the performance of attention-based models. Fortunately, by connecting SSMs and attention, the SSD
framework introduced by Mamba-2 [29] allows us to develop a shared vocabulary and library of techniques for
Transformer and Mamba. In light of this, an important future direction arises, i.e., to explore how the emerging
techniques designed for Transformer-based models can be effectively applied to Mamba-based models.

7.4.1 Parameter-efficient Finetuning. Large foundation models, scaling up their parameters to billion levels, have
witnessed groundbreaking advancement in multiple fields. Nevertheless, their extensive scale and computational
requirements present significant challenges when tailoring them for specific downstream tasks. To this end, several
parameter-efficient finetuning (PEFT) techniques, including the LoRA [72] and Adapter families [50, 91], have been
proposed, which involves minimizing the adjustment of parameters or the need for extensive computational resources
during fine-tuning. Drawing inspiration from the recent achievements in employing PEFT for large language models
constructed using Transformer layers, the adoption of PEFT for Mamba models has emerged as an intriguing topic,
with the goal of broadening their range of applications in downstream tasks. For instance, the deployment of LoRA
(Low-Rank Adaptation) is anticipated to facilitate rapid fine-tuning for the SSD models, thus enabling the widespread
application of Mamba across various domains. However, the specifics of implementing these PEFT techniques for
Mamba-based models are yet to be determined and require further investigation.

7.4.2 Catastrophic Forgetting Mitigation. Catastrophic forgetting, also known as catastrophic interference, refers
to the phenomenon observed in machine learning models where they experience a significant loss in performance on
previously learned tasks when trained on new tasks [92]. This issue poses a challenge for foundation models because they
need to retain knowledge from pre-training tasks and demonstrate consistent performance across different downstream
domains. As a promising architecture of the foundation model, Mamba necessitates a thorough investigation to address
catastrophic forgetting issues. RRecent research has suggested resolving this challenge by encapsulating task-specific
needs through Reward Maximization and Distribution Matching strategies [96, 97]. Moreover, continual learning
methods have also been developed to mitigate catastrophic forgetting in Transformer-based language models [90, 186].
These techniques can also be applied to Mamba models by connecting SSMs and attention but remain under-explored.

7.4.3 Retrieval-augmented Generation (RAG). Being among the most sophisticated techniques in AI, RAG can
provide dependable and current external knowledge, offering significant utility for a multitude of tasks [31, 99]. Large
Language Models have recently showcased groundbreaking language comprehension and generation capabilities,
despite encountering inherent limitations like hallucinations and outdated internal knowledge. In light of RAG’s potent
capacity to offer current and valuable supplementary information, Retrieval-Augmented LLMs have emerged, which
leverage extraneous knowledge databases to enhance the generative quality of LLMs [22]. Similarly, RAG can be
incorporated with Mamba language models to assist them in producing high-quality outputs, which is a promising
future research direction.

8 Conclusion

Mamba, an emerging deep learning architecture, has demonstrated remarkable success across diverse domains, such
as language generation, image classification, recommendation, and drug discovery, owing to its powerful modeling
capabilities and computational efficiency. Recently, increasing efforts have been made to develop Mamba-based deep

Manuscript submitted to ACM



30 Qu et al.

learning models with more powerful representation learning capabilities and lower computation complexity. Given the
rapid advancement of Mamba, there arises an urgent demand for a systematic overview. To bridge this gap, in this
paper, we provide a comprehensive review of Mamba, focusing on its architecture advancements, data adaptability, and
application areas, offering researchers both an in-depth understanding and an overview of the latest developments in
Mamba. Additionally, given that Mamba research is still in its nascent stages, we also discuss current limitations and
present promising directions for future investigation.
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