
Rethinking Large Language Model Architectures
for Sequential Recommendations

Hanbing Wang1 , Xiaorui Liu3 , Wenqi Fan4 , Xiangyu Zhao5 , Venkataramana Kini2
Devendra Yadav2 , Fei Wang2 , Zhen Wen2 , Jiliang Tang1 , Hui Liu1

1Michigan State University, 2Amazon, 3North Carolina State University, USA
4The Hong Kong Polytechnic University, 5City University of Hong Kong, China

{wangh137,liuhui7,tangjili}@msu.edu,{venkini,feiww,yaddevn,zhenwen}@amazon.com
liu96@ncsu.edu,wenqifan03@gmail.com,xianzhao@cityu.edu.hk

ABSTRACT

Recently, sequential recommendation has been adapted to the LLM
paradigm to enjoy the power of LLMs. LLM-based methods usually
formulate recommendation information into natural language and
the model is trained to predict the next item in an auto-regressive
manner. Despite their notable success, the substantial computa-
tional overhead of inference poses a significant obstacle to their
real-world applicability. In this work, we endeavor to streamline
existing LLM-based recommendation models and propose a simple
yet highly effective model Lite-LLM4Rec. The primary goal of
Lite-LLM4Rec is to achieve efficient inference for the sequential
recommendation task. Lite-LLM4Rec circumvents the beam search
decoding by using a straight item projection head for ranking scores
generation. This design stems from our empirical observation that
beam search decoding is ultimately unnecessary for sequential
recommendations. Additionally, Lite-LLM4Rec introduces a hier-
archical LLM structure tailored to efficiently handle the extensive
contextual information associated with items, thereby reducing
computational overhead while enjoying the capabilities of LLMs.
Experiments on three publicly available datasets corroborate the
effectiveness of Lite-LLM4Rec in both performance and inference
efficiency (notably 46.8% performance improvement and 97.28% effi-
ciency improvement on ML-1m) over existing LLM-based methods.
Our implementations will be open sourced.

CCS CONCEPTS

• Information systems→ Recommender systems.

KEYWORDS

Recommender Systems, Large Language Models, Sequential Rec-
ommendation

ACM Reference Format:

Hanbing Wang1 , Xiaorui Liu3 , Wenqi Fan4 , Xiangyu Zhao5 , Venkatara-
mana Kini2, Devendra Yadav2 , Fei Wang2 , ZhenWen2 , Jiliang Tang1 , Hui
Liu1. 2018. Rethinking Large Language Model Architectures for Sequential

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

Recommendations. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation emai (Conference acronym ’XX). ACM,
New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Sequential recommendation is to predict next item a user will inter-
act with based on his/her interaction history. Because user interests
are dynamic and evolving over time, it is important to capture the
sequential pattern, leading to accurate recommendations. Tradi-
tional methods model the item transition patterns based on Markov
Chain [10, 11, 34]. With the development of deep learning, a variety
of deep neural networks, such as Transformer [18, 35], RNN [12, 40]
and CNN [37], have been proposed to advance the task, achieving
remarkable performance. Furthermore, side information (e.g., at-
tributes, titles) has been incorporated [14, 17, 47], which helps
achieve remarkable improvement, demonstrating its importance
and potential.

Recently, thewidespread success of large languagemodels (LLMs),
such as GPT [3], T5 [31], and Llama [39], has demonstrated their
exceptional ability of contextual understanding and offers a promis-
ing direction to improve recommendation systems with heightened
personalization and adaptability. Existing LLM-based recommenda-
tion algorithms [7, 21, 46] mainly adapt recommendation tasks to
the LLM paradigm by formulating relevant information, i.e., inter-
action information, meta data, or candidate items through various
indexing strategies into natural language. As shown in Figure 1,
such information will be wrapped in a prompt template, and fed
into LLMs as input. Subsequently, the input will be transformed
into an informative latent representation and the model will auto-
regressively generate the recommendations in natural language
through decoding with beam search [42].

Although existing LLM-based methods have achieved remark-
able success, the exorbitant cost of inference hinders their real-
world applications and poses a formidable obstacle to seamless,
real-time user experiences [27, 32, 45]. To gain deeper insights
into this efficiency challenge, we perform a preliminary study in
Section 3.2 on the impact of the key components of LLM-based
methods. First, we observe that the beam search decoding is the
most time-consuming component. This component is employed to
generate 𝑘 recommendations for a user, leading to 𝑘 times greater
model computation complexity. Second, we find that inference time
diminishes with reduced input length. Longer input often leads
to more model computations [21]. Furthermore, we reveal that ex-
isting item indexing will lead to serious redundant computation
problem because 1) the item indexing will be tokenized into several

ar
X

iv
:2

40
2.

09
54

3v
1

 [
cs

.I
R

]
 1

4
Fe

b
20

24

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanbing et al.

tokens before being fed into the LLM, which will result in longer
input; and 2) some items may appear frequently in the data and
the model will compute on the item token string every time when
it appears. Our further study of the impact of beam search and
item indexing on model performance in Section 3.3 suggests that
the beam search decoding and item indexing are burdensome and
unnecessary for sequential recommendation.

Grounded on our preliminary studies, we aim to streamline the
model architecture of existing LLM-based recommendations, in-
troducing Lite-LLM4Rec as an efficient solution for sequential
recommendation. We find that the beam search decoding is unnec-
essary and resource-intensive for this specific task. Therefore, Lite-
LLM4Rec circumvents the beam search decoding process. Though
representing items with their context information can achieve supe-
rior performance, it makes the input very long and correspondingly
increases computational costs. To tackle this challenge, we pro-
pose a hierarchical LLM structure with two key components - Item
LLM and Recommendation LLM - to process extensive context in-
formation efficiently. We demonstrate that formulating relevant
information such as interaction information, meta information into
natural language is superfluous because LLMs can actually under-
stand the semantic information encoded in the latent representation.
This design can reduce the input length and alleviate redundant
computation while enjoying the power of LLMs. Experimental re-
sults indicate that Lite-LLM4Rec can significantly improve not
only the inference efficiency but also the overall performance. The
main contributions of this paper are summarized as follows:

• We simplify existing LLM-based recommendation models
and propose a simple but effective sequential recommenda-
tion model Lite-LLM4Rec. Through eliminating the decoder,
Lite-LLM4Rec can achieve better performance as well as
significant inference efficiency.

• We design a novel hierarchical LLM structure to efficiently
process long context information in LLM-based recommen-
dations, which can reduce the computational demands while
enjoying the power of LLMs.

• We demonstrate the effectiveness of Lite-LLM4Rec on vari-
ous benchmark datasets.

2 RELATEDWORK

In this section, we summarize relevant works on sequential recom-
mendation and LLM-based solutions.

2.1 Sequential Recommendation

Sequential recommendations [18, 35] leverage user historical in-
teractions to infer the next item the user will interact with. Since
user interests are dynamic and evolving over time, it is impor-
tant to capture this sequential pattern and provide appropriate
recommendations. Early studies mainly depend on Markov Chain
to model item transition patterns [11, 34]. Recently, deep-learning
based methods have dominated the area. For example, GRU4rec [13]
proposes to use RNN in session-based recommendation. Some ap-
proaches introduce CNN into sequential recommendation [37, 41].
SASrec and BERT4rec [18, 35] employ the self-attention mechanism
into sequential recommendation and achieve excellent performance.
However, these methods neglect rich contextual information about

A User has purchased: item_1,item_2,…,
predict next possible item to be
purchased by the user.

Text Prompt

Transformer Encoder

Auto-regressive Decoder

Beam Search Decoding

item_123,item_234…,</s>

LLM tokenizer & Embedding

Specific item index method

Figure 1: An Illustration of LLM-based sequential recommen-

dations.

items, which is important for item modeling. To tackle this problem,
several algorithms are proposed [25, 26, 43, 47, 48]. For example,
FDSA [47] proposes a self-attention block to leverage item attribute
information. 𝑆3rec [48] maximizes the mutual information of con-
text information in different forms to improve sequential recom-
mendation. Despite the remarkable improvements made by these
methods, they can still be further improved via the excellent world
knowledge and context understanding ability of LLMs.

2.2 LLM-based Recommendation

The prevalence of LLMs has introduced a paradigm shift into rec-
ommender systems [6]. Early approaches investigate the practical-
ity of textual representations generated by a language model for
recommendations [9, 22, 30, 44]. By pre-training and then fine-
tuning on downstream datasets, enhanced representations can
be obtained [5, 15, 20]. The emergence of generative LLMs shifts
recommendation system towards generative paradigm [32]. Early
attempts explore the potential of LLMs on recommendation via
prompt or in-context learning [24, 36, 38]. TallRec [1] trains the
LLM to predict whether a user will like a new item given users’
interaction history, underscoring the importance of instruction
tuning. P5 [7] reformulates several recommendation tasks into a
natural language generation task via personalized prompts. Refer
to Figure 1 for an overall understanding of its architecture.

In order to leverage the power of LLMs, items are usually repre-
sented in natural language form via specific item indexing methods,
which can be roughly divided into two categories. The first category
proposes to reflect item relations via share tokens, such as semantic
IDs [16, 27]. Given the continued significance of ID information,
recent studies keep the IDs and represent items as ’item_1234’,
which will be tokenized into a token sequence ’item’,’_’,’12’,’34’ be-
fore being input to LLMs [7, 21, 29]. The second category represents
items via context information. Tallrec [1] uses item title to represent

Rethinking Large Language Model Architectures
for Sequential Recommendations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 1: Inference time (ms) and input length

Method Avg length Time/Batch
Bert4rec 21.0 2.37
P5 112.2 2280
POD 85.0 2170

items. RECFORMER [20] flattens the key-value attribute pairs of
the item as a sequence to accommodate more textual information,
and employs a Longformer [2] to process the long context.

Although these methods have achieved remarkable improve-
ments, they still face slow inference problem. Recent studies have
delved into this issue. POD [21] improves P5 [7] by distilling dis-
crete prompt into continuous prompt to reduce the input length,
thus reducing inference time. llamaRec [45] proposes a two stage
framework. Specifically, it retrieves candidate items via traditional
ID-based methods, and designs a verbalizer approach for re-ranking.
E4SRec [23] proposes to integrate ID embeddings extracted from a
pre-trained SASRec with instruction prompt but neglects the rich
context information of items. LightLM [27] proposes a tailored
transformer-based architecture to achieve effective recommenda-
tions. It improves the inference efficiency by reducing the number
of neurons thus reducing the computation demands. However, the
modification of architecture may destroy the pre-trained knowl-
edge of LLMs, leading to sub-optimal performance. Despite the
strides made in improving inference efficiency, these methods still
fall short in addressing the most time-consuming component and
the issue of redundant computation.

3 PRELIMINARIES

In this section, we empirically study the inference efficiency prob-
lem of existing LLM-based recommendations. First, we compare the
inference time of LLM-based methods with traditional sequential
recommendation algorithm BERT4rec [35] and analyse the impact
of each component in LLM-based recommendations in terms of
inference efficiency. Then, we investigate the impact of different
components in terms of performance effectiveness. Before detail-
ing the aforementioned preliminary studies, we first introduce the
problem statement and some key notations we will use in this work.

3.1 Problem Statement and Notations

We denote 𝑢 ∈ U and 𝑖 ∈ I for a user and an item, whereU and I
indicate the user set and the item set, respectively. The interaction
history of a user𝑢 can be organized as a sequence I𝑢 = (𝑖1, 𝑖2, ..., 𝑖𝑡)
in a chronological order, where 𝑡 is the length of I𝑢 and each item 𝑖

is associated with textual informationT𝑖 (e.g., title and genre). Given
the interaction history I𝑢 of user 𝑢, sequential recommendation
algorithms aim to predict next item 𝑖𝑡+1 the user is most likely
to interact with from I\I𝑢 , which represents the item set formed
by excluding the items already interacted with the user from the
complete set of items I.

3.2 Efficiency Analysis

In this subsection, we will explore the following questions: 1) In
terms of inference efficiency, how do LLM-based recommendation

0.4%

39.0%

59.3%

1.3%

(a) POD

0.4%

46.4%
51.9%

1.4%

(b) P5

Encoding
Beam_search
Decoding
Others

Figure 2: Inference time of different components for a batch

of 32 users. ’Beam_search’ refers to the beam search decoding

process, ’Decoding’ transfers the latent representation to

token IDs, and ’Others’ includes data preparation, metrics

calculations etc.

algorithms perform compared with traditional recommendations;
and 2) Why do they face such serious inference efficiency problem.
To answer these questions, we first demonstrate the huge infer-
ence efficiency gap between LLM-based and traditional sequential
recommendation systems and then investigate the inference time
cost of each component, and the relation between input length
and inference time. In this study, we focus on two typical LLM-
based recommendation algorithms, i.e., P5 and POD [7, 21], and
one representative traditional sequential recommendation system,
i.e., BERT4rec [35].

For all the following experiments, we use the implementations
released by POD [21]1 and we keep the same experimental settings.
Our analysis is based on ML-1m and Movies, two popular publicly-
available datasets. More details of the datasets can be found in
Section 5.1.1. We calculate the inference time by measuring the
total time of all the test data going through each component during
inference, and then we can obtain the average inference time for a
batch of 32 users.We denote the length of the input as the number of
tokens of the tokenized context (e.g., ’item_1234’ will be tokenized
as ’item’ ’_’ ’12’ ’34’ by the tokenizer of T5, and the input length will
be 4). The results are shown in Table 1. We can make the following
observations: 1) Compared with Bert4rec, the efficiency of P5 and
POD has been significantly compromised, experiencing a slowdown
of nearly a thousand times; and 2) POD is more efficient than P5
via reducing the input length which can lead to the decrease of the
computational costs. To further explore why LLM-based methods
face such formidable inference problem, we conduct time analysis
on the inference time cost of each component in P5 and POD [7,
21]. Figure 2 demonstrates the average inference time cost of each
component. From the figure, we note that the beam search decoding
process is most time-consuming which takes approximately 98.2%
on P5 [7] and 98.3% on POD [21] of the inference time.

3.3 Effectiveness Analysis

In the previous subsection, we have demonstrated that the inef-
ficiency of LLM-based recommendations comes from the beam
search decoding process and input length. In this subsection, we
investigate how the beam search decoding and item indexing affect

1https://github.com/lileipisces/POD

https://github.com/lileipisces/POD

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanbing et al.

Table 2: Performance of P5 and POD and their two variants

Datasets ML-1m Movies
Methods R@20 N@20 Time R@20 N@20 Time
P5 0.2985 0.1442 2,280 0.1080 0.0761 1,770
w/o_d 0.3109 0.1459 40.06 0.1217 0.0794 37.01
w/o_d_TID 0.3354 0.1586 95.40 0.1401 0.0905 99.02
POD 0.2992 0.1403 2,170 0.1089 0.0761 1,400
w/o_d 0.3022 0.1416 35.21 0.1330 0.0866 32.13
w/o_d_TID 0.3339 0.1567 90.26 0.1406 0.0908 80.38

the inference efficiency and the performance. We implement two
variants of P5 and POD as follows:

(1) w/o_d. It eliminates the decoder and uses an item projection
head to perform the recommendation task (Details in Section
4.3).

(2) w/o_d_TID. On the basis of eliminating the decoder, it repre-
sents items with their titles instead of random numbers.

We report the performance and inference efficiency in Table 2.
We can make the following observations: 1) eliminating the beam
search decoding can significantly improve the inference efficiency;
2) although representing items with their titles can improve the
performance due to the incorporation of contextual information,
it impairs the inference efficiency because the length of input be-
comes longer (increases to 297.4 on ML-1m), resulting in more
computational costs.

3.4 Discussion

In this subsection, we summarize key findings from the prelimi-
nary studies as follows: (1) Compared with Bert4Rec, LLM-based
recommendations are much more time-consuming. (2) Reducing
the input length will improve the inference efficiency. (3) Beam
search decoding will have negative impacts on the efficiency of
sequential recommendation. (4) Compared with random number,
item title can better represent items and achieve better performance
due to the incorporation of contextual information. (5) Despite the
advantages of item title, they are usually very long and will increase
computational costs. These findings provide the groundwork for
us to simplify existing LLM-based recommendations and propose
a simple but effective framework Lite-LLM4Rec for sequential
recommendations.

4 THE PROPOSED FRAMEWORK

Motivated by our findings, in this section, we aim to simplify the
architecture to obtain a better sequential recommendation sys-
tem, which is easier to train and can achieve low-latency infer-
ence and better performance. In this section, we introduce the
proposed framework Lite-LLM4Rec. We first give an overview of
Lite-LLM4Rec. Then we detail its key components and finally give
its training details.

4.1 An Overview

Figure 3 demonstrates the whole architecture of Lite-LLM4Rec. To
mitigate redundant computation and enhance inference efficiency,

Context-aware embeddings

 Item Projection Head

……

Recommendation LLM

Timeline

The whole item set

Scores

Mean-pooling Layer

Item LLM

Nadine
Comedy

Carmen
Drama

Poison
Drama

Item LLM Item LLM

Meta Data

……

Figure 3: An overview of the architecture of Lite-LLM4Rec.

Lite-LLM4Rec proposes a hierarchical LLM structure which con-
tains two LLM components: Item LLM and Recommendation LLM.
We first encode the extensive context information of items via the
Item LLM into context-aware vectors and then the Recommenda-
tion LLM takes these context-aware vectors as input instead of the
original lengthy contexts. Then, Lite-LLM4Rec proposes to replace
the beam search decoding process with an item projection head. As
a result, it can generate recommendations more effectively. In the
following subsections, we will detail our model.

4.2 Hierarchical LLM Structure

In order to leverage the power of LLMs, existing LLM-based recom-
mendations usually formulate items into natural language through
various indexing strategies, which can be fed into LLMs. These item
indexing methods can be roughly divided into two categories. The
first category encodes item relations into the item indexing such as
semantic IDs [16, 21, 27]. These methods can capture item relations
via shared tokens but the indexing by itself doesn’t contain any
semantic information, which may not be able to fully explore the
potential of LLMs. The second category denotes an item by its meta
data such as title or genre [1, 20]. These methods take item contex-
tual information into consideration but the inputs are usually very
long, which needs more time to process or even worse they need
truncation or special architectures to process when they exceed the
length limitation of LLMs.

In addition, the above two kinds of item indexings will be tok-
enized before being fed into the LLM. This tokenization process
leads to increased computational complexity, as each item will be
represented by multiple tokens. Moreover, redundant computations
occur when the same item appears multiple times in the input. For
example, in the ML-1m dataset, the movie ’Star Wars: Episode I -
The Phantom Menace (1999)’ will be tokenized into 11 tokens by

Rethinking Large Language Model Architectures
for Sequential Recommendations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

T5 [31], and appears 539 times in the input during inference, lead-
ing to severe redundant computation problem and correspondingly
hurting the inference efficiency. .

Lite-LLM4Rec aims to simplify existing item indexing methods
while also being able to leverage the power of LLMs. Particularly,
we propose a hierarchical LLM structure comprising two distinct
LLM components: Item LLM and Recommendation LLM. The Item
LLM is to encode extensive context information of an item into
a compact, context-aware vector representation. Leveraging its
capabilities, the Item LLM can effectively capture the contextual
nuances and dependencies within the input sequence, facilitating
the creation of a context-aware vector for each item. Then, the
Recommendation LLM processes the sequence of context-aware
vectors rather than the original lengthy context sequences. Thus the
input length of LLM can be significantly reduced. In the following,
we will give the details about acquiring context-aware vectors for
items and sequence representations.

We represent the context information of item 𝑖 (e.g., title, genre)
after tokenization byT 𝑒

𝑖
= (𝑤1,𝑤2, ...,𝑤𝐿), where𝑤 denotes tokens

of the context information and 𝐿 is the length of the context. Then,
we input T 𝑒

𝑖
into the item LLM which can be denoted as:

𝐼𝑛𝑝𝑢𝑡 (T 𝑒
𝑖) = (𝑤1,𝑤2, ...,𝑤𝐿) . (1)

Through the model, we can obtain the output representation for
each token:

𝑂𝑢𝑡𝑝𝑢𝑡 (T 𝑒
𝑖) = (ℎ𝑤1 , ℎ𝑤2 , ..., ℎ𝑤𝐿

) . (2)

Then we can obtain the context-aware embedding for the item:

ℎ𝑖 = 𝑀𝑒𝑎𝑛_𝑝𝑜𝑜𝑙𝑖𝑛𝑔(ℎ𝑤1 , ℎ𝑤2 , ..., ℎ𝑤𝐿
), (3)

where ℎ𝑤𝑖
∈ R1×𝑑 is the representation for the corresponding

token 𝑤𝑖 . Notice that deriving high quality item representation
is not our focus, so we just apply a simple mean-pooling over all
tokens’ representation to get the final context-aware embedding
for each item. More complicated representation methods will be
explored as one future work.

After obtaining context-aware embeddings for items. The Recom-
mendation LLM will take a sequence of context-aware embeddings
as input instead of the lengthy natural language input. Similarly,
we also apply a simple mean-pooling function to the output of the
Recommendation LLM to obtain the representation of sequence:

ℎ𝑢 = 𝑀𝑒𝑎𝑛_𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑅𝑒𝑐_𝐿𝐿𝑀 (ℎ1, ℎ2, ..., ℎ𝑡)), (4)

whereℎ represents the context-aware embedding for an item,𝑅𝑒𝑐_𝐿𝐿𝑀
indicates the Recommendation LLM with per-trained weights.

This kind of architecture has several advantages: First, we en-
code the long context information of an item via the Item LLM
into a single embedding, which greatly reduces the length of the
input sequence while preserving the semantic information. Sec-
ond, it mitigates the redundant computation problem since the
item representation can be directly obtained from the Item LLM
instead of computing repetitively every time when the item appears.
Thus, Lite-LLM4Rec can improve inference efficiency via reducing
computational costs.

Algorithm 1: Training Process of Lite-LLM4Rec
Input: The sequential data D, Context information of items

T , hyper-parameter settings;
Output:Model parameters 𝜃 ;

1 while not coverage do
2 Draw a batch of data B from D;
3 for (𝑢,I𝑢) in B do

4 Sample an item segment 𝐼𝑠𝑒𝑔𝑢 from I |𝑠𝑢 |−2
𝑢 ;

5 for 𝑖 in 𝐼
𝑠𝑒𝑔
𝑢 do

6 Acquire context information T𝑖 ;
7 Calculate context-aware embeddings ℎ𝑖 through

Eq. 1 - Eq. 3;
8 end

9 Acquire the user representation ℎ𝑢 through Eq. 4;
10 end

11 Compute logits through Eq. 5 ;
12 Compute 𝐿𝐶𝐸 through Eq. 6;
13 Update the parameters 𝜃 of the model through 𝐿𝐶𝐸 ;
14 end

4.3 Item Projection Head

Our findings in preliminary studies suggest that the beam search
decoding during the auto-regressive generation is the most time-
consuming component. This operation is originally designed for
natural language generation, which generates the tokens step by
step. When it is applied to sequential recommendations, it will
generate the recommendation items in natural languages form (e.g.,
generating a string ’item_1123’).

Our preliminary study suggests that this operation is unneces-
sary for sequential recommendations due to the following disad-
vantages. First, the head layer of LLM will output the probability
distribution over the LLM vocabulary, which is unnecessary since
item tokens only account for a small proportion of the whole vocab-
ulary. Second, The model will generate non-existent and repetitive
items. Third, generating 𝑘 recommendations for a user will result in
𝑘 times more computational costs which significantly contributes
to inference delays, thereby exacerbating the efficiency problem.

Lite-LLM4Rec proposes to circumvent the beam search decoding
process and introduces a simple but effective item projection head,
which will directly output the probability over the whole item set.
Lite-LLM4Rec treats the probability as the ranking scores and
takes items with the highest scores as the final recommendations.
In particular, Lite-LLM4Rec adopts a simple one-layer Multi Layer
Perceptron (MLP) without bias [19] as the projection head, which
can be formulated as follows:

𝑙𝑜𝑔𝑖𝑡𝑠 =𝑊𝑝𝑟𝑜 𝑗ℎ𝑢 , (5)

where ℎ𝑢 stands for sequence representation for user 𝑢 obtained
by Eq. 4, 𝑊𝑝𝑟𝑜 𝑗 is the projection matrix of the MLP, and 𝑙𝑜𝑔𝑖𝑡𝑠

represents the output scores over the whole item set.

4.4 Model Training

Since we use an item projection head to acquire recommendation
scores, there is no need to do negative-sampling because it implicitly

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanbing et al.

Table 3: Statistics of the datasets after pre-processing.

Dataset Users Items Interact Sparsity(%)
ML-1M 6,040 3,706 994,169 0.0446
Movies 79,276 29,946 1,775,011 0.0007
Toys 11,803 8,569 206,103 0.0020

considers all the un-interacted items as negative samples. We train
the hierarchical model with a cross-entropy loss as shown below:

𝐿𝐶𝐸 = −
𝑁∑︁
𝑖=1

𝑦𝑖𝑙𝑜𝑔𝑟𝑖 , (6)

where 𝑁 is the number of items, 𝑦𝑖 represents the ground-truth
for item 𝑖 , which is 1 if item 𝑖 is the ground-truth item, otherwise
0; and 𝑟𝑖 is the predicted score of item 𝑖 . We provide the training
procedure as well as the implementation details in Algorithm 1. We
adopt two training strategies which are denoted as ’Lite-LLM4Rec
_sampling’ and ’Lite-LLM4Rec _all’ in Table 4 and their details are
given in 5.1.4.

5 EXPERIMENT

In this section, we conduct comprehensive experiments to verify
the effectiveness and efficiency of the proposed Lite-LLM4Rec. In
particular, we try to answer the following questions:

• Can the proposed Lite-LLM4Rec achieve better overall per-
formance? (Section 5.2)

• Can the proposed Lite-LLM4Rec improve inference effi-
ciency? (Section 5.3)

• How does Lite-LLM4Rec perform on Top-N recommenda-
tion task? (Section 5.4)

• How do different components of Lite-LLM4Rec affect the
recommendation performance? (Section 5.5)

5.1 Experimental Settings

5.1.1 Datasets. To evaluate the effectiveness of Lite-LLM4Rec,
we conduct a series of experiments on three real-world bench-
mark datasets, includingML-1m2 [8], Amazon-Movies and Amazon-
Goys&Games3 [28]. We partition them into training, validation and
test sets with the commonly used leave-one-out strategy. It takes
the second-to-last item as the validation item, the last item as the
test item and all other items as training items in each user’s interac-
tion history. Table 3 shows the statistics of these datasets and some
details are as follows:

• The ML-1m dataset is an open dataset for movie recom-
mendations. There are approximately 100k interactions. We
adopt 5-core filtering strategy where we filter out users and
items with less than 5 interactions.

• We consider two categories of Amazon dataset corpora:
Movies and Toys&Games (denoted as Toys for clarity). These
datasets are collected from the e-commerce platform Ama-
zon4 with itemmeta data, user reviews and ratings.We adopt

2https://grouplens.org/datasets/movielens/1m/
3https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews
4https://www.amazon.com/

10-core filtering strategy to filter the users and items with
less than 10 interactions to ensure data quality.

5.1.2 Evaluation protocols. We adopt two widely used metrics
Recall@𝑘 and NDCG@𝑘 , where 𝑘 = 10, 20. Recall@𝑘 represents
the coverage of ground-truth items that appear in the final recom-
mendation list. NDCG@𝑘 measures the ranking quality of the final
recommendation items. For both metrics, a larger value indicates
better performance. For our method and the baselines, we evaluate
the performance on the whole item set, and the reported results
are the average values over all users.

5.1.3 Baselines. We choose representative methods from three
groups as baselines, i.e., traditional ID-based sequential models,
Context-aware ID-based models, LLM-based recommendation mod-
els. We consider the following tradition ID-based sequential mod-
els: (i) SASRec [18] proposes an unidirectional attention-based
sequential model which can capture long-term semantics to pre-
dict the next item. (ii) BERT4Rec [35] introduces a bidirectional
attention-based transformer to model user behavior sequences. It
introduces the Cloze objective into sequential recommendations.

The context-aware ID-based sequential models include: (i) S3Rec [48]
applies self-supervised learning to the sequential recommendation
task. It proposes four self-supervised optimization objectives to
maximize the mutual information of context information to learn
the correlation between items. (ii) FDSA [47] proposes to model
feature transitions through different self-attention blocks. It inte-
grates with item-level transitions for modeling user’s sequential
intents.

We choose the following LLM-based sequential models: (i) P5 [7]
transforms various recommendation tasks into the conditional nat-
ural language generation task via personalized prompts and inte-
grates them into a unified framework. (ii) POD [21] proposes to
distill knowledge in the discrete prompt into continuous prompt vec-
tors, which is more flexible and expressive and can reduce the infer-
ence time. (iii) LightLM [27] proposes a tailored Transformer-based
recommender, which is effective and efficient for generative recom-
mendations. Since llamaRec [45] is a two-stage framework while
Lite-LLM4Rec is single-stage, we do not choose it as one baseline.

5.1.4 Implementation details. We use T5-small from Huggingface5
as our backbone in the main experiments. The encoder and decoder
in this model both have 6 layers, each of which is an 8-headed
attention layer. We find that after training, further fine-tuning the
context-aware embeddings and the Recommendation LLM will
result in better performance. In the ablation study 5.5.2, we also
investigate the impact of different backbones for Item LLM. Fol-
lowing [21], we randomly sample a segment of no more than 21
items from a user’s interaction history for each iteration which is
denoted as ’Lite-LLM4Rec _sampling’ in Table 4. We also imple-
ment another training strategy where we traverse all the training
data without sampling which is represented as ’Lite-LLM4Rec _all’.
We set the batch_size for three datasets to 256 and the learning rate
to 0.0005. The embedding dimension is set to 512. The dropout rate
is 0.8 and the weight_decay is 0.1 for Movies and Toys. The dropout
rate is 0.7 for ML-1m. The warm_up rate and the adam_eps are
set to 0.1 and 1e-6 for Movies and Toys, respectively. All methods
5https://huggingface.co/t5-small

https://grouplens.org/datasets/movielens/1m/
https://cseweb.ucsd.edu/~jmcauley/datasets.html#amazon_reviews
https://www.amazon.com/
https://huggingface.co/t5-small

Rethinking Large Language Model Architectures
for Sequential Recommendations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 4: Overall performance comparison of on ML-1m, Movies and Toys with conventional sequential baselines and LLM-based

sequential methods. R denotes Recall, and N denotes NDCG. Boldface represents the best results. Underscore indicates the

second best results.

Datasets ML-1m Movies Toys

Method R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20
BERT4Rec 0.1981 0.2892 0.1093 0.1323 0.0761 0.1048 0.0493 0.0565 0.0352 0.0543 0.0179 0.0227
SASRec 0.1834 0.2785 0.0801 0.1040 0.1082 0.1449 0.0714 0.0807 0.0561 0.0776 0.0312 0.0366
𝑆3-Rec 0.1776 0.2733 0.0882 0.1123 0.0764 0.1074 0.0481 0.0560 0.0538 0.0811 0.0276 0.0345
FDSA 0.1962 0.2854 0.1058 0.1283 0.1151 0.1500 0.0804 0.0891 0.0568 0.0860 0.0344 0.0417
LightLM 0.1705 0.2531 0.0928 0.1135 0.0751 0.0958 0.0521 0.0574 0.0509 0.0721 0.0302 0.0355
P5 0.2149 0.2985 0.1232 0.1442 0.0905 0.1080 0.0718 0.0761 0.0543 0.0661 0.0356 0.0416
POD 0.2185 0.2992 0.1201 0.1403 0.0904 0.1089 0.0715 0.0761 0.0565 0.0690 0.0421 0.0452
Lite-LLM4Rec _sampling 0.2733 0.3770 0.1518 0.1780 0.1156 0.1447 0.0856 0.0929 0.0682 0.0927 0.0426 0.0488

Lite-LLM4Rec _all 0.3209 0.4255 0.1866 0.2129 0.1253 0.1596 0.0906 0.0992 0.0627 0.0894 0.0382 0.0449

are implemented using Pytorch with an AdamW optimizer. For the
hyper-parameters of baselines, we use the values suggested by the
original papers with carefully fine-tuning on the three datasets. We
check the validation performance every epoch and adopt early-stop
when the validation performance of R@10 doesn’t improve for 20
consecutive times.

5.2 Effectiveness Comparison

The performance comparison is shown in Table 4. From the results,
we can make the following observations: 1) Lite-LLM4Rec exhibits
significantly better performance than LLM-based recommendation
baselines. Notably, the average Recall@10 improvements over the
best results of LLM-based recommendation baselines are 46.8% on
ML-1m, 38.4% on Movies, and 20.7% on Toys, highlighting the effec-
tiveness of our design. The potential reasons for the performance
improvement are two-fold. First, the beam search decoding process
will score the whole LLM vocabulary where item tokens are a small
proportion while the item projection head in Lite-LLM4Rec only
scores items directly. Second, we propose a hierarchical LLM struc-
ture, where item information is encoded into context-aware vectors
instead of the original natural language form. 2) Lite-LLM4Rec
consistently outperforms the best performance over baselines. The
improvement on NDCG@20 is approximately 51.4% on ML-1m,
11.3% on Movies, and 7.9% on Toys, which can be attributed to the
power of LLMs. Notice that traditional ID-based and context-aware
recommendation algorithms are still competitive. We will perform
ablation study in Section 5.5.1 to further study how Lite-LLM4Rec
works.

5.3 Efficiency Comparison

In this subsection, we analyze the inference efficiency of Lite-
LLM4Rec with LLM-based recommendation baselines. Since opera-
tions like obtaining context-aware embeddings and metrics com-
puting and so on can be done off-line, we just measure the time
between inputting the data to the model and obtaining the final
recommendations as the inference time. The results are shown in
Table 5. Apparently, Lite-LLM4Rec can achieve superior inference
efficiency. The improvement over POD is approximately 99.71% on
ML-1m, 99.63% on Movies, and 99.66% on Toys. We contribute the

Table 5: Comparison of inference time (ms) for a batch of 32

users.

Datasets ML-1m Movies Toys

P5 2,280 1,770 1,620
POD 2,170 1,400 1,490
Lite-LLM4Rec 6.13 5.14 5.03

Improvement 99.71% 99.63% 99.66%

Table 6: Comparison of average input length for a batch of

32 users.

Datasets ML-1m Movies Toys

P5 112.2 112.1 107.1
POD 85.0 89.1 83.5
Lite-LLM4Rec 21 20.7 20.8

Improvement 75.2% 76.7% 75.0%

efficiency improvement to the following reasons. First, we remove
the most time-consuming part - beam search decoding. Second, the
hierarchical LLM structure we propose to process long context can
mitigate the redundant computation problem and reduce the com-
putational costs. We also report the comparison of input length in
Table 6. As can be seen, the advantage of Lite-LLM4Rec is evident,
as the improvement of input length is 75.2%, 76.7%, and 75.0% over
POD on three datasets, respectively.

5.4 Top-N Recommendation

Besides sequential recommendation, we also apply Lite-LLM4Rec
to Top-N recommendation task. We follow the setting of POD [21].
We input one ground-truth item along with 99 negative items to
the LLM and fine-tune the model to predict the ground-truth item.
Finally,We test themodel over the 99 negative examples. The results
are reported in Figure 5.

From the figure, we can find that Lite-LLM4Rec can also perform
well on this task. Our method can achieve much better performance
on NDCG than P5 [7] and POD [21]. This indicates that our method

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanbing et al.

ML-1m Toys0.0

0.1

0.2

0.3

0.4

R@
10

ML-1m Toys0.0

0.1

0.2

0.3

0.4

R@
20

ML-1m Toys0.00

0.05

0.10

0.15

N@
10

ML-1m Toys

0.05

0.10

0.15

N@
20

LITE_LLM4REC fixRecLLM fixHead Scratch

Figure 4: Ablation study results of R@10, R@20, N@10 and N@20 on ML-1m and Toys dataset.

R@5 R@10 R@200.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Re
ca

ll

N@5 N@10 N@200.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

ND
CG

LITE-LLM4REC P5 POD

Figure 5: Results of Top-N recommendation on ML-1m.

can greatly improve the ranking quality especially when candidates
are given. For Recall, our method can perform better when 𝑘 is
small. This is because the leave-one-out strategy we adopt where
we only have one ground-truth item and our method can already
rank the ground truth item in high position.

5.5 Ablation Study

5.5.1 Effectiveness of each component. In this section, we aim to
analyse how different components influence the overall perfor-
mance. We conduct experiments on ML-1m and Toys datasets with
Lite-LLM4Rec _sampling strategy to assess each component. We
design the following variants of our model:

(1) fixT5: Recommendation LLM (the encoder of T5) is fixed.
(2) fixHead: item projection head is fixed.
(3) Scratch: the parameters of the Recommendation LLM is ran-

domly initialized instead of loading pre-trained weights.
We demonstrate the results in Figure 4. From the results, we

can have the following observations. First, each component in our
framework contributes to the overall performance since fixing any
one of the components results in the performance drop. Second, if
we train a T5 from scratch instead of using the pre-trained weights
for the recommendation LLM, the performance will drop either.
This demonstrates the knowledge stored in LLM is of help to our
recommendation task.

5.5.2 Impact of Item LLMs. In order to explore whether the perfor-
mance gains come from the alignment between the Item LLM and

Table 7: Impact of Item LLMs

ML-1m R@10 R@20 N@10 N@20
Lite-LLM4Rec 0.2733 0.3770 0.1518 0.1780
T5-base 0.2728 0.3742 0.1512 0.1767
Bert 0.2706 0.3749 0.1529 0.1793
Sbert 0.2668 0.3707 0.1486 0.1748

the Recommendation LLM (both of them are T5), we conduct ex-
periments with other Item LLM backbones like Bert [4], Sbert [33]
and T5-base [31]. For Bert, we use ’bert-base-uncased’ version and
take the output of the pooler layer as the sequence representation.
For Sbert, we use ’all-MiniLM-L6-v2’ version. Since the dimension
of hidden state is not matched, one-layer MLP is adopted to trans-
form the dimension. The results are reported in Table 7. We can
find that other Item LLMs can also achieve satisfying performance,
which indicates that the influence of the backbones of Item LLMs
is limited.

6 CONCLUSION

In this work, we propose Lite-LLM4Rec, a simplified but effective
LLM-based sequential recommendation model, which can achieve
low-latency inference as well as better performance. Through exper-
imental explorations, we find that the beam search decoding process
is burdensome and unnecessary for sequential recommendation
task. We propose to circumvent it and use an item projection head
to acquire recommendations. Additionally, we find that existing
item indexing methods will lead to high computational costs and
redundant computations. To address the issue, we propose a novel
hierarchical LLM structure to process the long context information
of items efficiently while also enjoying the power of LLMs. These
two designs effectively tackle the inference problem in existing
LLM-based recommendation algorithms. Experiments conducted
on three real-world datasets can demonstrate that Lite-LLM4Rec
can achieve superior inference efficiency while also improving the
overall performance. In the future, we are interested in empowering
our models with inductive learning ability. Also, we are interested
in how the item indexing impacts the training of the model. Mean-
while, the size of the backbone of recommendation LLMs may affect
the performance and we would investigate it as one future work.

Rethinking Large Language Model Architectures
for Sequential Recommendations Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

REFERENCES

[1] Keqin Bao, Jizhi Zhang, Yang Zhang, Wenjie Wang, Fuli Feng, and Xiangnan He.
2023. Tallrec: An effective and efficient tuning framework to align large language
model with recommendation. arXiv preprint arXiv:2305.00447 (2023).

[2] Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020. Longformer: The long-
document transformer. arXiv preprint arXiv:2004.05150 (2020).

[3] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[5] Hao Ding, Yifei Ma, Anoop Deoras, Yuyang Wang, and Hao Wang. 2021. Zero-
shot recommender systems. arXiv preprint arXiv:2105.08318 (2021).

[6] Wenqi Fan, Zihuai Zhao, Jiatong Li, Yunqing Liu, Xiaowei Mei, Yiqi Wang, Jiliang
Tang, and Qing Li. 2023. Recommender systems in the era of large language
models (llms). arXiv preprint arXiv:2307.02046 (2023).

[7] Shijie Geng, Shuchang Liu, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2022.
Recommendation as language processing (rlp): A unified pretrain, personalized
prompt & predict paradigm (p5). In Proceedings of the 16th ACM Conference on
Recommender Systems. 299–315.

[8] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[9] Jesse Harte, Wouter Zorgdrager, Panos Louridas, Asterios Katsifodimos, Diet-
mar Jannach, and Marios Fragkoulis. 2023. Leveraging large language models
for sequential recommendation. In Proceedings of the 17th ACM Conference on
Recommender Systems. 1096–1102.

[10] Ruining He, Wang-Cheng Kang, Julian J McAuley, et al. 2018. Translation-based
Recommendation: A Scalable Method for Modeling Sequential Behavior.. In IJCAI.
5264–5268.

[11] Ruining He and Julian McAuley. 2016. Fusing similarity models with markov
chains for sparse sequential recommendation. In 2016 IEEE 16th international
conference on data mining (ICDM). IEEE, 191–200.

[12] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks with
top-k gains for session-based recommendations. In Proceedings of the 27th ACM
international conference on information and knowledge management. 843–852.

[13] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[14] Balázs Hidasi, Massimo Quadrana, Alexandros Karatzoglou, and Domonkos
Tikk. 2016. Parallel recurrent neural network architectures for feature-rich
session-based recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 241–248.

[15] Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong
Wen. 2022. Towards universal sequence representation learning for recommender
systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining. 585–593.

[16] Wenyue Hua, Shuyuan Xu, Yingqiang Ge, and Yongfeng Zhang. 2023. How
to Index Item IDs for Recommendation Foundation Models. arXiv preprint
arXiv:2305.06569 (2023).

[17] Jin Huang, Zhaochun Ren, Wayne Xin Zhao, Gaole He, Ji-RongWen, and Daxiang
Dong. 2019. Taxonomy-aware multi-hop reasoning networks for sequential
recommendation. In Proceedings of the twelfth ACM international conference on
web search and data mining. 573–581.

[18] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[19] Wang-Cheng Kang, Jianmo Ni, Nikhil Mehta, Maheswaran Sathiamoorthy,
Lichan Hong, Ed Chi, and Derek Zhiyuan Cheng. 2023. Do LLMs Understand
User Preferences? Evaluating LLMs On User Rating Prediction. arXiv preprint
arXiv:2305.06474 (2023).

[20] Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian
McAuley. 2023. Text Is All You Need: Learning Language Representations for
Sequential Recommendation. arXiv preprint arXiv:2305.13731 (2023).

[21] Lei Li, Yongfeng Zhang, and Li Chen. 2023. Prompt distillation for efficient llm-
based recommendation. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management. 1348–1357.

[22] Ruyu Li, Wenhao Deng, Yu Cheng, Zheng Yuan, Jiaqi Zhang, and Fajie Yuan.
2023. Exploring the Upper Limits of Text-Based Collaborative Filtering Using
Large Language Models: Discoveries and Insights. arXiv preprint arXiv:2305.11700
(2023).

[23] Xinhang Li, Chong Chen, Xiangyu Zhao, Yong Zhang, and Chunxiao Xing. 2023.
E4SRec: An Elegant Effective Efficient Extensible Solution of Large Language
Models for Sequential Recommendation. arXiv preprint arXiv:2312.02443 (2023).

[24] Junling Liu, Chao Liu, Renjie Lv, Kang Zhou, and Yan Zhang. 2023. Is chatgpt a
good recommender? a preliminary study. arXiv preprint arXiv:2304.10149 (2023).

[25] Qiang Liu, Shu Wu, Diyi Wang, Zhaokang Li, and Liang Wang. 2016. Context-
aware sequential recommendation. In 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, 1053–1058.

[26] Jarana Manotumruksa, Craig Macdonald, and Iadh Ounis. 2018. A contextual
attention recurrent architecture for context-aware venue recommendation. In The
41st international ACM SIGIR conference on research & development in information
retrieval. 555–564.

[27] Kai Mei and Yongfeng Zhang. 2023. LightLM: A Lightweight Deep and Narrow
LanguageModel for Generative Recommendation. arXiv preprint arXiv:2310.17488
(2023).

[28] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations
using distantly-labeled reviews and fine-grained aspects. In Proceedings of the
2019 conference on empirical methods in natural language processing and the 9th
international joint conference on natural language processing (EMNLP-IJCNLP).
188–197.

[29] Junyan Qiu, Haitao Wang, Zhaolin Hong, Yiping Yang, Qiang Liu, and Xingxing
Wang. 2023. ControlRec: Bridging the Semantic Gap between Language Model
and Personalized Recommendation. arXiv preprint arXiv:2311.16441 (2023).

[30] Zhaopeng Qiu, Xian Wu, Jingyue Gao, and Wei Fan. 2021. U-BERT: Pre-training
user representations for improved recommendation. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 4320–4327.

[31] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485–5551.

[32] Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan H Keshavan, Trung
Vu, Lukasz Heldt, Lichan Hong, Yi Tay, Vinh Q Tran, Jonah Samost, et al. 2023.
Recommender Systems with Generative Retrieval. arXiv preprint arXiv:2305.05065
(2023).

[33] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[34] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. 811–820.

[35] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang.
2019. BERT4Rec: Sequential recommendation with bidirectional encoder rep-
resentations from transformer. In Proceedings of the 28th ACM international
conference on information and knowledge management. 1441–1450.

[36] Weiwei Sun, Lingyong Yan, Xinyu Ma, Pengjie Ren, Dawei Yin, and Zhaochun
Ren. 2023. Is ChatGPT Good at Search? Investigating Large Language Models as
Re-Ranking Agent. arXiv preprint arXiv:2304.09542 (2023).

[37] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the eleventh ACM
international conference on web search and data mining. 565–573.

[38] Paul Thomas, Seth Spielman, Nick Craswell, and Bhaskar Mitra. 2023. Large
language models can accurately predict searcher preferences. arXiv preprint
arXiv:2309.10621 (2023).

[39] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[40] ShuWu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 33. 346–353.

[41] An Yan, Shuo Cheng, Wang-Cheng Kang, Mengting Wan, and Julian McAuley.
2019. CosRec: 2D convolutional neural networks for sequential recommenda-
tion. In Proceedings of the 28th ACM international conference on information and
knowledge management. 2173–2176.

[42] Zhengyi Yang, JiancanWu, Yanchen Luo, Jizhi Zhang, Yancheng Yuan, An Zhang,
XiangWang, and Xiangnan He. 2023. Large Language Model Can Interpret Latent
Space of Sequential Recommender. arXiv preprint arXiv:2310.20487 (2023).

[43] Weihua Yuan, Hong Wang, Xiaomei Yu, Nan Liu, and Zhenghao Li. 2020.
Attention-based context-aware sequential recommendation model. Informa-
tion Sciences 510 (2020), 122–134.

[44] Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen Fu, Fei Yang, Yunzhu
Pan, and Yongxin Ni. 2023. Where to go next for recommender systems? id-vs.
modality-based recommender models revisited. arXiv preprint arXiv:2303.13835
(2023).

[45] Zhenrui Yue, Sara Rabhi, Gabriel de Souza Pereira Moreira, DongWang, and Even
Oldridge. 2023. LlamaRec: Two-Stage Recommendation using Large Language
Models for Ranking. arXiv preprint arXiv:2311.02089 (2023).

[46] Junjie Zhang, Ruobing Xie, Yupeng Hou, Wayne Xin Zhao, Leyu Lin, and Ji-Rong
Wen. 2023. Recommendation as instruction following: A large language model
empowered recommendation approach. arXiv preprint arXiv:2305.07001 (2023).

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Hanbing et al.

[47] Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Deqing
Wang, Guanfeng Liu, Xiaofang Zhou, et al. 2019. Feature-level Deeper Self-
Attention Network for Sequential Recommendation.. In IJCAI. 4320–4326.

[48] Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang,
ZhongyuanWang, and Ji-RongWen. 2020. S3-rec: Self-supervised learning for se-
quential recommendation with mutual information maximization. In Proceedings
of the 29th ACM international conference on information & knowledge management.
1893–1902.

	Abstract
	1 Introduction
	2 Related work
	2.1 Sequential Recommendation
	2.2 LLM-based Recommendation

	3 Preliminaries
	3.1 Problem Statement and Notations
	3.2 Efficiency Analysis
	3.3 Effectiveness Analysis
	3.4 Discussion

	4 The Proposed Framework
	4.1 An Overview
	4.2 Hierarchical LLM Structure
	4.3 Item Projection Head
	4.4 Model Training

	5 Experiment
	5.1 Experimental Settings
	5.2 Effectiveness Comparison
	5.3 Efficiency Comparison
	5.4 Top-N Recommendation
	5.5 Ablation Study

	6 Conclusion
	References

