
A Comprehensive Survey on Graph Reduction: Sparsification, Coarsening, and
Condensation

Mohammad Hashemi∗1 , Shengbo Gong∗1 , Juntong Ni1 ,
Wenqi Fan2 , B. Aditya Prakash3 , Wei Jin1

1Emory University, 2The Hong Kong Polytechnic University, 3Georgia Institute of Technology
mohammad.hashemi@emory.edu, jshmhsb@gmail.com, juntongni02@gmail.com,

wenqi.fan@polyu.edu.hk, badityap@cc.gatech.edu, wei.jin@emory.edu

Abstract

Many real-world datasets can be naturally repre-
sented as graphs, spanning a wide range of do-
mains. However, the increasing complexity and
size of graph datasets present significant challenges
for analysis and computation. In response, graph
reduction techniques have gained prominence for
simplifying large graphs while preserving essen-
tial properties. In this survey, we aim to pro-
vide a comprehensive understanding of graph re-
duction methods, including graph sparsification,
graph coarsening, and graph condensation. Specif-
ically, we establish a unified definition for these
methods and introduce a hierarchical taxonomy to
categorize the challenges they address. Our sur-
vey then systematically reviews the technical de-
tails of these methods and emphasizes their prac-
tical applications across diverse scenarios. Fur-
thermore, we outline critical research directions to
ensure the continued effectiveness of graph reduc-
tion techniques, as well as provide a comprehen-
sive paper list at https://github.com/ChandlerBang/
awesome-graph-reduction. We hope this survey
will bridge literature gaps and propel the advance-
ment of this promising field.

1 Introduction
Graph-structured data has become ubiquitous in various do-
mains, ranging from social networks and biological systems
to recommendation systems and knowledge graphs [Fan et
al., 2019; Wu et al., 2022b, 2018; Shi and Weninger, 2017;
Wang et al., 2021]. The inherent relational structure of graph
data makes it a powerful representation for modeling com-
plex interactions and dependencies. Moreover, with the rise
of graph machine learning techniques, especially graph neu-
ral networks (GNNs) [Kipf and Welling, 2016; Wu et al.,
2020], the utilization of graph datasets has seen unprece-
dented growth, leading to advancements in tasks such as node
classification, link prediction, graph classification, and graph
generation [Zhou et al., 2020; Ma and Tang, 2021].

∗Equal contribution.

Graph Reduction

Original Dataset	
𝒯 = 𝒢(𝒱,ℰ),	 𝑁= |𝒱|, 𝐸 = |ℰ| Reduced Dataset	

𝒮 = 𝒢!(𝒱’,ℰ’), 𝑁’ = |𝒱!|,𝐸′ = |ℰ′|

𝑁’ < 𝑁 and/or 𝐸! < 𝐸

Maintaining Key
Information

Figure 1: A general framework of graph reduction. Graph reduction
aims to find a reduced (smaller) graph dataset that can preserve cer-
tain information of the original graph dataset.

Recent years have witnessed an exponential increase in the
size and complexity of graph datasets. Large-scale networks,
such as social graphs and citation networks [Hu et al., 2021],
challenge the scalability and efficiency of existing algorithms
and demand innovative solutions for efficient model training.
Despite recent efforts to design GNNs that can scale with
large graphs [Jia et al., 2020; Zeng et al., 2021; Song et al.,
2023; Liu et al., 2021], an alternative approach focuses on
reducing the size of the graph dataset, including the number
of graphs, nodes, and edges, which we term as graph reduc-
tion1 [Jin et al., 2022b; Huang et al., 2021]. In this paper,
we define graph reduction as the process of finding a graph
dataset of smaller size while preserving its key information.
Specifically, this definition requires an algorithm that takes
the original graph dataset as input and produces a smaller one.
As shown in Figure 1, graph reduction aims to extract the es-
sential information from the massive graph dataset by main-
taining its structural and semantic characteristics. In addi-
tion to accelerating graph algorithms, graph reduction offers a
range of advantages. First, reduced graphs demonstrate com-
patibility with various downstream models architectures [Jin
et al., 2022b]. Second, graph reduction may contribute to pri-
vacy preservation since it alters the original structure or node
attributes, making them challenging to recover [Dong et al.,
2022]. Third, the reduced graph is notably smaller and more
comprehensible for humans compared to its larger counter-
part, which aids in graph visualization [Imre et al., 2020].

1It is also known as graph summarization, simplification or de-
generacy in some literature. We choose to consistently use “graph
reduction” throughout this survey for clarity and uniformity.

ar
X

iv
:2

40
2.

03
35

8v
3

 [
cs

.S
I]

 1
9

Fe
b

20
24

https://github.com/ChandlerBang/awesome-graph-reduction
https://github.com/ChandlerBang/awesome-graph-reduction

Given the importance of graph reduction, numerous algo-
rithms have been developed, falling into three distinct strate-
gies: graph sparsification [Althöfer et al., 1993; Batson et
al., 2009], graph coarsening [Loukas and Vandergheynst,
2018; Dorfler and Bullo, 2012], and the more recent graph
condensation [Jin et al., 2022b,a; Xu et al., 2023; Liu et al.,
2022]. Graph sparsification revolves around the approxima-
tion of a graph by retaining only a subset of its edges and vital
nodes. In contrast, graph coarsening does not eliminate any
nodes but instead groups and amalgamates nodes into super
nodes, with original inter-group edges being aggregated into
super edges using a specified aggregation algorithm. Differ-
ing from the aforementioned two strategies, graph condensa-
tion has been recently introduced as a method to condense a
graph by synthesizing a smaller graph while preserving the
performance of GNNs. Despite the proliferation of these
methods, they have often been studied in isolation, leaving
the connections and distinctions between them somewhat ob-
scured. Therefore, it is both necessary and timely to offer a
systematic overview of these existing algorithms in order to
enhance our understanding of graph reduction techniques.

Contributions. In this work, we aim to present a comprehen-
sive and up-to-date survey focusing on graph reduction tech-
niques and their diverse applications in tackling graph-related
challenges. We aspire for this survey to serve as a valuable re-
source for both novice researchers and practitioners interested
in exploring this field, while also catalyzing future research
endeavors. Our contributions can be summarized as follows:

(a) We offer the first comprehensive review of graph reduc-
tion methods, encompassing graph sparsification, graph
coarsening, and graph condensation.

(b) We develop a unified perspective for existing graph re-
duction methods, differentiating them based on their
characteristics in Section 2, and provide a detailed review
of representative algorithms in Section 3.

(c) We discuss practical applications of graph reduction
methods in Section 4, shedding light on real-world sce-
narios where these techniques prove valuable.

(d) In Section 5, we identify key challenges and promis-
ing future research directions, guiding the continued ad-
vancement of graph reduction techniques.

Connection to Existing Surveys. In contrast to previous re-
views on graph reduction [Liu et al., 2018; Interdonato et al.,
2020; Shabani et al., 2023; Chen et al., 2022], our study offers
a comprehensive overview of the emerging field of graph con-
densation and presents a unified framework that bridges graph
condensation with conventional graph reduction techniques.
Additionally, our survey explores synergies between graph
reduction and GNNs, an aspect rarely covered in existing sur-
veys. Also, some data-centric graph learning surveys [Zha et
al., 2023; Zheng et al., 2023a]include discussions on graph
reduction but we offer a more detailed and thorough exami-
nation of reduction techniques. Furthermore, our work shares
connections with recent surveys on dataset distillation [Geng
et al., 2023; Sachdeva and McAuley, 2023], while they ma-
jorly focus on condensation methods applied to image data.

Table 1: Notations used in this paper.

Notation Description
G A graph
G′ A reduced graph
V Set of graph nodes
E Set of graph edges
X Node feature matrix
A Adjacency matrix
Y One-hot label matrix
L Graph Laplacian matrix
C Node assignment/mapping matrix
T Original graph dataset
S Synthetic graph dataset
N Number of nodes

2 Taxonomy of Graph Reduction
Before we formally introduce the definition of graph re-
duction, we first introduce the notations used in this paper.
Given the node set V and edge set E , we denote a graph as
G = (V, E). In attributed graphs, nodes are associated with
features, and thus can be represented as G = (A,X), where
X = [x1,x2, ...,xN] denotes the node attributes and A de-
notes the adjacency matrix. The graph Laplacian matrix is
L = D − A, where D is a diagonal degree matrix with
Dii =

∑
j Aij . We use N = |V| and E = |E| to denote

the number of nodes and edges, respectively. We summarize
the major notations in Table 1.

A Unified Framework of Graph Reduction Given a graph
G = (V, E), graph reduction outputs a graph G′ = (V ′, E ′)
which contains N ′ nodes and E′ edges, subject to N ′ < N ,
or E′ < E edges. The reduced graph G′ preserves the desired
information of the original graph G. This process can be un-
derstood as finding a graph G′ that minimizes a loss function
L explicitly or implicitly, which measures the difference be-
tween G and G′ in terms of certain information:

G′ = argmin
G′

L(G,G′). (1)

Remark 1. Note that the desired outcome of graph reduc-
tion should be represented as a graph, leading to the exclusion
of graph representation learning methods [Wu et al., 2020] in
the context of graph reduction. Furthermore, we restrict this
definition to graphs that converge to an optimal state through
the algorithmic process. This distinction sets it apart from
data augmentation techniques [Rong et al., 2019; Zhao et al.,
2022], where the augmented graphs vary with each epoch.

Remark 2. While the majority of graph reduction meth-
ods focus on decreasing the number of nodes or edges within
a graph, there are also studies [Jin et al., 2022a; Xu et al.,
2023] that reduce the number of distinct graphs, particularly
in applications such as graph classification. In this survey, un-
less explicitly specified otherwise, our primary focus remains
on the former approach, as it is more commonly employed.

On top of that, we can categorize existing graph reduction
techniques into the following three groups, based on how they
produce the reduced graphs:

Kernel Ridge
Regression

Graph Sparsification Graph Coarsening Graph Condensation

Graph Reduction

Matching-
based Others

Gradient
Matching

Distribution
Matching

Eigenbasis
Matching

G
C

ond

D
osC

ond

M
SG

C

SG
D

D

FG
D

G
C

A
R

e

G
roC

M
C

ond

G
C

D
M

PU
M

A

C
aT

FedG
K

D

G
C

E
M

K
ID

D

SFG
C

G
C
-SN

T
K

M
IR

A
G

E

Methods

Learning Objective
Minor Classes

Learning Objective
Major Classes

Approach

Property
Preservation

Performance
Preservation

Reconstruction-
Free

Reconstruction-
Based

SPA
N
N
E
R

T
R

S

SparR
L

W
IS

C
oreW

alk

U
G

S

K
ron

K
-snap

SC
A

L

G
rA

SS

LV

FG
C

C
T

R
L

D
isC

o

Figure 2: Taxonomy of existing graph reduction methods.

Definition of Graph Sparsification Given a graph G =
(A,X), graph sparsification selects existing nodes or edges
from the graph G and outputs G′ = (A′,X′). In other words,
the elements in A′ or X′ are the subset of those in A or X.

Definition of Graph Coarsening Given a graph G =
(A,X), graph coarsening outputs G′ = (A′,X′) contain-
ing N ′ super-nodes and E′ super-edges, where N ′ < N .
It requires finding a surjective mapping from the original
graph to a coarse graph, which can be formulated by a one-
hot matrix C ∈ {0, 1}N×N ′

that assigns nodes to super-
nodes. We further define the reverse assignment matrix P =
rowNormalize(C⊤). Then the coarse graph is usually con-
structed by A′ = C⊤AC,X′ = PX with the Laplacian
matrix being L′ = C⊤LC.

Definition of Graph Condensation Given a graph T =
(A,X,Y), with Y being the node labels, graph conden-
sation aims to learn a small-synthetic graph dataset S =
(A′,X′,Y′), where N ′ < N , such that a GNN trained on
S obtains a comparable performance to the one trained on T .

Distinctions. The above three strategies share a common
goal: to obtain a small graph that can preserve key informa-
tion and benefit downstream processes. However, they differ
in three key aspects. First, graph condensation synthesizes
fake graph elements, while sparsification selects existing ones
and coarsening aggregates them. The latter two strategies en-
joy certain interpretability in the reduction process, as the re-
duced graph can be easily understood and related back to the
original graph. Second, these strategies have distinct objec-
tives. Graph condensation aims to maintain the performance
of GNN models in downstream tasks, while the other two of-
ten target at preserving graph properties. Third, graph con-
densation relies on labels, whereas the other two generally do
not.

In Figure 2, we present a detailed taxonomy of existing
graph reduction methods within the aforementioned cate-
gories, and we will elaborate in the following section. Ad-
ditionally, Table 2 provides a qualitative comparison of the
three graph reduction strategies mentioned earlier.

3 Methodology
In this section, we introduce the representative algorithms for
the aforementioned three strategies of graph reduction. For
each strategy, we categorize methods by their learning objec-
tives and summarize popular approaches in Table 3.

3.1 Graph Sparsification
Graph sparsification, as an intuitive method for graph reduc-
tion, involves selecting essential edges or nodes based on spe-
cific criteria and then constructing a smaller graph from these
selected elements. Conventional approaches typically focus
on preserving specific graph properties, such as spectrum and
centrality. With the increasing popularity of GNNs, there is a
growing array of methods aimed at maintaining the quality of
node representations. Consequently, we categorize existing
techniques into two groups based on their preservation goals:
those focused on preserving graph properties and those dedi-
cated to maintaining model performance.

Preserving Graph Properties
In traditional graph sparsification, essential graph properties
include pairwise distances, cuts, and spectrum [Batson et al.,
2013]. Sparsification methods iteratively sample the sub-
graphs that achieve the minimal loss L(G′, G) in a greedy
manner, which measures the approximation to the original
graph w.r.t. one of the above graph properties. A reduced
graph is called spanner if it maintains pairwise distances, and
sparsifier if it preserves cut or spectrum [Batson et al., 2013].
To evaluate these algorithms, one common way is to establish
the loss bound for their output graph G′: If G′ is proved to sat-
isfy L(G′, G) ≤ ϵ, ϵ ∈ (0, 1), it is called ϵ-spanner/sparsifier.
Specifically, L(G′, G) is expressed as |D(G′, G) − 1| with
D(·, ·) defined as follows:

D(G′, G) =

{
SP(G′)
SP(G) for spanner,
x⊤L′x
x⊤Lx

for sparsifier,
(2)

where SP(G) denotes the sum of the shortest path length for
all node pairs in G, and x ∈ RN is an arbitrary vector.

Spanners. Althöfer et al. [1993] first develop an algorithm
named SPANNER to obtain spanners in graphs. It starts with
an empty graph defined on the original node set and adds

Table 2: General qualitative comparison of graph reduction methods. “Scalability”: the ability to scale up to large graphs, “Interpratability”:
the existence of correspondence between nodes in the original and reduced graphs, “Label Utilization“: the reliance on the label information.

Strategy Interpretability Label Utilization Objective Output
Sparsification ✓ × Property Preservation Sampled graph
Coarsening ✓ × Property/Performance Preservation Supergraph
Condensation × ✓ Performance Preservation Synthetic graph

edges from the original graph only if their weight is smaller
than the current distance between their connected nodes in
the reduced graph. They also prove that every weighted graph
has a 2t-spanner with O(N1+1/t) edges. Baswana and Sen
[2003] tighten this upper bound to (2t− 1) with a linear time
algorithm that merely explores the edges in the neighborhood
of a node. Furthermore, by defining a reinforcement learn-
ing process and adjusting reward functions to the preservation
of pairwise distance, SparRL [Wickman et al., 2022] outper-
forms all conventional graph sparsification approaches.

Sparsifiers. One representative sparsifier is called Twice
Ramanujan Sparsifier (TRS) [Batson et al., 2009], which
prove that for every ϵ ∈ (0, 1) and every undirected graph
G, there exists a weighted graph G′ with at most (N − 1)/2
edges such that G′ is the (1 + ϵ)-sparsifier of G with high
probability. This approach presents an algorithm for de-
riving G′ by decomposing the graph into subgraphs with
high conductance, calculating pairwise effective resistance
(ER) [Spielman and Srivastava, 2008], and sampling edge
based on normalized ER as probabilities. Then the edges in
the reduced graph are reweighted as the probabilities. Fur-
thermore, Lee and Sun [2018] present an almost-linear time
algorithm for constructing such a sparsifier. Previous stud-
ies typically necessitate alterations to edge weights as part of
the reweighting process. Anderson et al. [2014] address the
sparsifier problem conditioned by keeping the original edge
weights, employing a method of unweighted column selec-
tion. Since most theories are constructed upon the undirected
graph, Chung [2005] first extends them into directed graphs
by first symmetrizing the graph Laplacians. Different from
the above methods that only cut edges, Feng [2016] first finds
an extremely sparse subgraph – low-stretch spanning tree,
and recovers small portions of off-tree edges to further ap-
proximate the spectrum.

In addition to traditional properties, new ones have been
proposed, and methods have been developed to preserve these
emerging properties. Kron reduction [Dorfler and Bullo,
2012] is initially developed to address challenges in elec-
trical networks, specifically to simplify resistance networks
while maintaining the pairwise ER. This method calculates
the coarse graph Laplacian L′ by Schur complement

L′ = LV′,V′ − LV′,V̄′L−1
V̄′,V̄′LV̄′,V (3)

where V ′ denotes the selected index from V , V̄ ′ = V − V ′,
and LV,V′ is the submatrix of L whose row index is V and
column index is V ′. Recently, Sugiyama and Sato [2023]
extend it to a directed graph with self-loop. In contrast to
selecting nodes arbitrarily, Fang et al. [2010] calculate Schur
complement after finding the largest node set consisting of

nodes not adjacent to each other. GSGAN [Wu and Chen,
2020] designs a reward function to guide the graph generator
in a generative adversarial network creating random walks.
These random walks are finally combined to form a smaller
edge set that is effective for community detection.

Preserving Performance
With the emergence of GNNs, a new goal of graph sparsi-
fication has arisen: maintaining the prediction performance
of GNNs trained on the sparsified graph. In this context,
the sparsification process selects the top-k nodes or edges
based on various scoring methods, such as ER [Spielman and
Srivastava, 2008], PageRank [Langville and Meyer, 2004],
KCenter [Sener and Savarese, 2018] and explanations from a
trained GNN [Ying et al., 2019].

Many methods employ model-free heuristics as the scor-
ing strategy, which calculate the score with metrics derived
from the graph structure. For example, Salha et al. [2019]
use k-core decomposition to find interconnected subgraphs
with different density index k. By treating subgraphs corre-
sponding to high values of k as the reduced graph, they ef-
fectively circumvent the computational demands associated
with calculating node embeddings for large graphs. Similarly,
CoreWalk [Brandeis et al., 2020] utilizes this framework for
reducing the graph but generate the node embeddings with
different methods. Furthermore, recent work WIS [Razin et
al., 2023] highlights that the ability to model node interac-
tions is primarily determined by the model-free metrics walk
index (WI), which refers to the number of walks originating
from the boundary of the partition. Consequently, unimpor-
tant edges are removed based on sorted WI values. Although
these metrics offer insights from a certain perspective of the
graph, they might not be compatible with the downstream
models and tasks.

In contrast, recent years have also witnessed many model-
based scoring methods, which utilize a parameterized model
to calculate the score. For instance, Jin et al. [2022b] adopt
coreset methods [Welling, 2009; Sener and Savarese, 2018] to
select nodes based on their embeddings from a trained GNN
model. Apart from these general scoring methods which can
be used for any modality, recent works on the interpretability
of GNN, e.g., GNNexplainer [Ying et al., 2019] can also be
related to graph sparsification. For example, IGS [Li et al.,
2023a] sparsifies a graph based on edge importance obtained
from GNNexplainer and feeds the sparsified graph into the
next iteration. Other methods fall under graph structure learn-
ing [Zhu et al., 2021], which can be viewed as renders the
scoring of edges learnable. For example, Zheng et al. [2020]
learn a sparsified graph structure by neighbor sampling ac-
cording to the and reparameterization trick [Jang et al., 2016]

during GNN training; UGS [Chen et al., 2021] and CGP [Liu
et al., 2023a] simultaneously prune the elements in graph ad-
jacency matrix (edges) and the GNN weights to reduce the
graph and lighten the model.

However, there are a few works that do not fall into the
scoring-and-selection strategy and instead adopt a holistic ap-
proach to selection. For example, OTC [Garg and Jaakkola,
2019] achieves selection by minimizing the optimal transport
distance between an initial node distribution supported on V
and a target distribution supported on a subset V ′ selected via
the associated transport problem [Peyré et al., 2019]. The re-
duced graph is then obtained by restricting the original graph
to nodes in V ′ and their incident edges.

3.2 Graph Coarsening
The selection of nodes or edges in sparsification methods
can inevitably lose some information. To ensure that a suf-
ficient amount of information is preserved, coarsening tech-
niques have been developed, which involve grouping nodes
and aggregating them. This process can be carried out it-
eratively, yielding hierarchical views of the original graph.
Existing coarsening methods can be categorized into two
groups depending on whether a reconstruction objective ex-
ists: reconstruction-based methods and reconstruction-free
methods, which will be elaborated upon subsequently.

Reconstruction-Based Methods
Reconstruction-based coarsening methods involve a two-step
process. First, they reconstruct the original graph from the
coarse graph, where super nodes are mapped back to their
original nodes. This way, the super nodes are lifted to sizes
comparable to those in the original graph [LeFevre and Terzi,
2010]. Subsequently, the goal is to find the coarsening map-
ping matrix (C or P) that can minimize the differences be-
tween the reconstructed graph and the original one, which
are quantified by examining their adjacency or Laplacian ma-
trices. These coarsening techniques can be broadly catego-
rized into spatial or spectral coarsening methods, depending
on whether they utilize the adjacency or Laplacian matrix for
this purpose.

Spatial coarsening. Spatial coarsening adopts the Recon-
struction Error (RE) [LeFevre and Terzi, 2010] as the objec-
tive function L:

REp(Al|A) = ||Al −A||pF (4)

where the lifted adjacency matrix Al [LeFevre and Terzi,
2010] is usually defined as:

Al(u, v) =

0 if u = v

Ei/
(
Ni

2

)
if u, v ∈ Vi

Eij/(NiNj) if u ∈ Vi, v ∈ Vj

(5)

where Ei represents the number of edges within the super
node Vi, Eij denotes the number of edges between Vi and
Vj , and Ni is the number of nodes belonging to Vi. It is
also proved that Al can be expressed as a function of P and
A [Riondato et al., 2017]. As the first work proposing RE,
GraSS [LeFevre and Terzi, 2010] randomly samples part of
node pairs and merges one of them causing the smallest in-
crease of RE. Riondato et al. [2017] show the connection of

minimizing RE with geometric clustering problems and de-
velops a polynomial-time approximation. Similarly, Beg et
al. [2018] propose a weighted sampling scheme to sample
vertices for merging that will result in the least RE.

Spectral coarsening. Different from spatial methods, spec-
tral coarsening methods compare the Ll and L by compar-
ing their eigenvalues or eigenvectors. The lifted Laplacian
matrix is defined as Ll = P⊤L′P [Kumar et al., 2023].
Loukas [2019]; Loukas and Vandergheynst [2018] propose
restricted spectral approximation and derive a relaxed eval-
uation called Relative Eigenvalue Error (REE) defined as
REE =

∑k
i=1 |λi − λ′

i|/λi , where λi and λ′
i are the top-k

eigenvalues of the matrices L and L′, respectively. Note that
they use L′ instead of Ll because the comparison of eigen-
values does not require the alignment of the sizes. They also
give the theoretical guarantee of greedy pairwise contraction
approaches, where different node pair scoring methods can be
used including Heavy Edge [Dhillon et al., 2007], Algebraic
Distance [Chen and Safro, 2011], Affinity [Livne and Brandt,
2012] and Local Variation (LV) [Loukas, 2019]. Some works
hold that the edge weights can be further optimized after pair-
wise contraction. For example, Zhao et al. [2018] scale
the edge weights by stochastic gradient descent to further
align the eigenvalues after coarsening. In addition, some en-
deavor is made for lossless coarsening, e.g., Navlakha et al.
[2008]; Khan et al. [2015] keep the correction set recording
the missed edges during pairwise contraction.

Aside from these heuristics, there are other approaches.
FGC [Kumar et al., 2023] takes both the graph structure and
the node attributes as the input and alternatively optimizes C
and X′. SGC [Bravo Hermsdorff and Gunderson, 2019] con-
siders the edge sparsification and contraction as edge weights
of 0 and ∞. Then they develop a probabilistic framework to
preserve the pseudo-inverse of graph Laplacian L+ by L+

l .
GOREN [Cai et al., 2021] learns the edge weights in the
coarse graph by a GNN with the loss to preserve the graph
Laplacian L by Ll.

Reconstruction-Free Methods
Despite the proliferation of reconstruction-based methods,
other approaches do not rely on the reconstruction while still
keeping the key information. [Itzkovitz et al., 2005] coarsen
complex engineered and biological networks into smaller and
more comprehensible versions, where nodes represents prob-
abilistically generalized network motifs in the original net-
work. To analyze social networks with diverse attributes
and relations, SNAP [Tian et al., 2008] produces a summary
graph where every node inside a super node has the same val-
ues for selected attributes, and is adjacent to nodes with the
same selected relations. k-snap [Tian et al., 2008] relaxes
this homogeneity requirement and allows users to control the
resolutions of summaries. AGSUMMARY [Wu et al., 2014]
utilizes the Minimum Description Length principle to design
a cost function and compute an optimal summary by neigh-
borhood greedy strategy. Since the former two methods only
apply to discrete attributes, CANCEL [Zhang et al., 2010]
relaxes this condition to continual ones with adaptive cut-
offs and proposes a comprehensive metric named interesting-
ness. To extend the above methods focusing only on one task,

CoarseNet [Purohit et al., 2014] tries to find a succinct rep-
resentation of the original network that preserves important
diffusive characters, which can be applied to both influence
maximization and propagation patterns detection tasks. To
flexibly achieve higher performance among different tasks,
Netgist [Amiri et al., 2018] defines a task-based graph sum-
marization problem and uses RL to create a flexible frame-
work for learnable node merging policies.

Remarks on Graph Coarsening
Graph Coarsening in GNNs. There are growing numbers of
works that combine coarsening with GNNs. For instance,
SCAL [Huang et al., 2021] first trains a GNN model in a
graph coarsened by LV, with super node label defined as Y′ =
argmax(PY) and then directly uses this model to inference.
Following the same framework, Generale et al. [2022] define
the relation summarization and uses R-GCN [Schlichtkrull et
al., 2018] for knowledge graphs. To mimic the pooling layer
in the convolutional neural network, Such et al. [2017] make
the mapping matrix learnable and produce a pooled graph re-
duced to fewer nodes layer by layer. CONVMATCH [Dick-
ens et al., 2023] merges nodes that are equivalent or similar
w.r.t. the GCN convolution operation. Similarly, Buffelli
et al. [2022] match the node embeddings output by GNNs
among graphs in different coarsening ratios. VNG [Si et al.,
2023] highlights the ongoing challenge of efficiently deploy-
ing a GNN model in online applications when connections
exist between testing nodes and training nodes. To tackle
this issue, they match the forward propagation by applying
weighted k-means to obtain the mapping matrix C.

Connections with Graph Clustering/Partition. Partition
and clustering in graphs are long-developed areas. Graph par-
tition aims to find a split for a graph with the least cost, e.g.,
cutting the fewest edges. The representative partition method,
METIS [Karypis and Kumar, 1997], coarsens a graph itera-
tively by pairwise contraction, splits the nodes in the coars-
est graph, and reversely maps them to the original graph.
This reconstruction-based framework is widely used for par-
tition [Safro et al., 2015], which means the areas of parti-
tion and coarsening are mutually reinforcing. Graph cluster-
ing attempts to find groups of nodes with high in-group edge
density, and relatively low out-group density [Tsitsulin et al.,
2023]. Thus, by mapping these dense groups to super nodes
and aggregating them, any clustering method can apply to the
coarsening strategy.

3.3 Graph Condensation
While sparsification and coarsening methods have proven ef-
fective in reducing the size of graph data, they have inher-
ent limitations. As many of these methods prioritize preserv-
ing specific graph properties, they do not leverage the down-
stream task information and could lead to suboptimal model
performance. Furthermore, these techniques rely on the as-
sumption of the existence of representative nodes or edges in
the original graph, which might not always hold true in the
original dataset. To address these issues, graph condensation,
first introduced by [Jin et al., 2022b], has come into play.

Motivated by dataset distillation [Wang et al., 2018] and
dataset condensation [Zhao et al., 2020], graph condensation

revolves around condensing knowledge from a large-scale
graph dataset to construct a much smaller synthetic graph
from scratch. The goal is to ensure that models trained on
this condensed graph dataset exhibit comparable performance
to those trained on the original one. In other words, we can
see graph condensation as a process of minimizing the loss
defined on the models trained on the real graph T and the
synthetic graph S. Thus, the objective function in Eq. (1) can
reformulated as follows:

S = argmin
S

L(GNNθS (T),GNNθT (T)), (6)

where GNNθS and GNNθT denote the GNN models trained
on S and T , respectively; L represents the loss function used
to measure the difference of these two models. Based on the
specific designs of L, we classify existing graph condensa-
tion methods into three categories: matching-based methods,
kernel ridge regression methods, and others.

Matching-Based Methods
To find the optimum synthetic graph dataset that minimizes
the loss for a GNN trained on it, while having the lowest loss
on the original graph dataset, one approach is to match some
meta-data elements related to S and T like gradients w.r.t. the
model parameters and distribution of node classes.

Gradient Matching. For computing the optimum synthetic
graph dataset S, Eq. (6) can be rewritten as the following bi-
level problem that generalizes to the distribution of random
initialization Pθ0 :

min
S

Eθ0∼Pθ0
[L (GNNθS (A,X),Y)] , (7a)

s.t. θS = argmin
θ

L
(
GNNθ(θ0) (A

′,X′) ,Y′) , (7b)

where θ (θ0) denotes that θ is a function acting on θ0. To
simplify the bi-level optimization of Eq. (7a) and (7b), Jin
et al. [2022b] propose GCond framework, the first graph con-
densation method, that matches the gradients from both graph
datasets match during each step of training:

min
S

Eθ0∼Pθ0

[
T−1∑
t=0

D (∇θL1,∇θL2)

]
, (8a)

L1 = L (GNNθt
(A′,X′) ,Y′) , (8b)

L2 = L (GNNθt (A,X) ,Y) , (8c)
where D(·, ·) represents a distance function, T stands for
the total number of steps in the entire training trajectory,
and θt refers to the model parameters at t-th training epoch.
By optimizing the above objective, the training process on
the smaller synthetic graph dataset S mimics the path taken
on the larger real dataset T , which leads to models trained
on real and synthetic datasets ending up with similar solu-
tions. To prevent overlooking the implicit correlations be-
tween node attributes and graph structure, GCond condenses
the graph structure by leveraging a function to parameterize
the adjacency matrix A′:

A′
ij = σ

([
MLPΦ

([
x′
i;x

′
j

])
+MLPΦ

([
x′
j ;x

′
i

])]
/2
)

(9)

where MLPΦ is a multi-layer perceptron (MLP) parame-
terized with Φ and [.; .] indicates concatenation. However,

Table 3: Summary of representative graph reduction methods. NC – Node Classification, GC – Graph Classification, LP – Link Prediction,
and AD – Anomaly Detection. The “Input” column shows the type of the input graph. Ã indicates that the method can only applied to a
symmetric adjacency matrix. Ar denotes the adjacency matrix with multiple relations.

Approach Method Learning Objective Evaluation Input

Graph Sparsification

SPANNER [Althöfer et al., 1993]
Property Preservation

Value of ϵ Ã

TRS [Batson et al., 2009] Value of ϵ Ã

SparRL [Wickman et al., 2022] Value of ϵ Ã

WIS [Razin et al., 2023]
Performance Preservation

NC X,A,Y

CoreWalk [Brandeis et al., 2020] LP A

UGS [Chen et al., 2021] NC, LP X,A,Y

Graph Coarsening

k-snap [Tian et al., 2008]

Reconstruction-Free

Clustering Metrics X,Ar

NetGist [Amiri et al., 2018] Clustering Metrics A

SCAL [Huang et al., 2021] NC X,A

VNG [Si et al., 2023] NC X,A

LV [Loukas and Vandergheynst, 2018]
Reconstruction-Based

REE A

FGC [Kumar et al., 2023] REE, RE, NC X, A

Graph Condensation

GCond [Jin et al., 2022b]

Gradient Matching

NC X, A, Y
DosCond [Jin et al., 2022a] NC, GC X, A, Y
MSGC [Gao and Wu, 2023] NC X, A, Y
SGDD [Yang et al., 2023] NC, LP, AD X, A, Y
FGD [Feng et al., 2023] NC X, A, Y
GCARe [Mao et al., 2023] NC X, A, Y
CTRL [Zhang et al., 2024a] NC, GC X, A, Y
GroC [Li et al., 2023b] NC X, A, Y
EXGC [Fang et al., 2024] NC, GC X, A, Y
MCond [Gao et al., 2023] NC X, A, Y
GCDM [Liu et al., 2022]

Distribution Matching

NC X, A, Y
PUMA [Liu et al., 2023d] NC X, A, Y
CaT [Liu et al., 2023c] NC X, A, Y
FedGKD [Pan et al., 2023] NC X, A, Y
KiDD [Xu et al., 2023]

Kernel Ridge Regression
GC X, A, Y

SFGC [Zheng et al., 2023b] NC X, A, Y
GC-SNTK [Wang et al., 2024] NC X, A, Y
GCEM [Liu et al., 2023b] Eigenbasis Matching NC X, A, Y
MIRAGE [Gupta et al., 2023] Computation Tree Compression GC X, A, Y
DisCo [Xiao et al., 2024] Disentangled Condensation NC X, A, Y
GEOM [Zhang et al., 2024b] Trajectory Matching NC X, A, Y

the optimization process in GCond involves a nested loop
as shown in Eq. (8a), which hinders the scalability of the
condensation method. To address this, DosCond [Jin et al.,
2022a] proposes a one-step GM scheme, where it exclusively
matches the network gradients for the model initialization θ0

while discarding the training trajectory of θt. By dropping
the summation in Eq. (8a), the objective function of DosCond
becomes:

min
S

Eθ0∼Pθ0
[D (∇θL1,∇θL2)] . (10a)

Note that, DosCond treats the graph structure A′ as a proba-
bilistic model to learn a discretized graph structure by learn-
ing a Bernoulli distribution over the edge set. Moreover,
DosCond offers a theoretical insight into the GM scheme
in graph condensation: the smallest gap between the result-
ing loss (achieved by training on synthetic graphs) and the
optimal loss is upper bounded by the gradient matching loss.

Additionally, it is worth mentioning that DosCond is the first
method that does graph condensation focusing on graph clas-
sification for reducing the number of multiple graphs. In sub-
sequent research, EXGC [Fang et al., 2024] further identi-
fies two primary causes for the inefficiency of those graph
condensation methods: the concurrent updating of large pa-
rameter sets and the parameter redundancy. Built on the GM
scheme, it employs the Mean-Field variational approxima-
tion to expedite convergence and integrate explanation tech-
niques [Ying et al., 2019] to selectively focus on important
nodes during the training process, thereby enhancing the effi-
ciency of graph condensation.

Several subsequent studies target at improving GM
for graph condensation to enhance the effectiveness of
GCond [Gao and Wu, 2023; Yang et al., 2023; Feng et al.,
2023; Mao et al., 2023; Li et al., 2023b; Gao et al., 2023;
Zhang et al., 2024a]. Unlike GCond, which uses a single fully

connected graph to generate the condensed graph dataset S,
MSGC [Gao and Wu, 2023] is introduced to leverage multiple
sparse graphs to create diverse neighborhoods for nodes that
enhance the capturing of neighborhood information. This, in
turn, allows GNNs to generate more informative embeddings
in the condensed graphs. Regarding the generalizability of
GCond across different GNN architectures, SGDD [Yang et
al., 2023] is proposed to explicitly prevent overlooking the
original graph dataset structure A by broadcasting it into the
construction of synthetic graph structure A′. In this way, it is
shown that SGDD reduces the Laplacian Energy Distribution
(LED) [Das et al., 2016; Gutman and Zhou, 2006] shift cross-
ing various datasets significantly compared to GCond. In ad-
dition to the node classification task, to validate the effective-
ness of SGDD, extensive link prediction problems have been
explored. Gao et al. [2023] identify the potential issues in
existing graph condensation methods for inductive node rep-
resentation learning and emphasize the under-explored need
for an explicit mapping between original and synthetic nodes.
Consequently, a GM-based method named MCond is intro-
duced, which explicitly learns a sparse mapping matrix to
smoothly integrate new nodes into the synthetic graph for in-
ductive representation learning. MCond employs an alternat-
ing optimization scheme compared to GCond, allowing the
synthetic graph and mapping matrix to take turns updating
toward dedicated objectives. Furthermore, CTRL [Zhang et
al., 2024a] argues the limited approach of using cosine sim-
ilarity for gradient matching, leading to biases, and suggests
adding gradient magnitudes into the objective function intro-
duced in GCond for a more accurate match. Their empirical
findings also show that this approach better aligns frequency
distributions between condensed and original graphs.

Despite the effectiveness of the previously mentioned
graph condensation methods, Feng et al. [2023] recognize
that these methods tend to exhibit fairness issues. By iden-
tifying the group fairness2, it demonstrated that as distillation
performance increases, fairness (Demographic Parity ∆DP)
decreases [Feng et al., 2023]. Particularly, it is showcased
that, by measuring the fairness of GNNs trained on origi-
nal graphs versus those trained on condensed graphs, an im-
provement in performance correlates with heightened fair-
ness issues in the synthetic condensed graph. To address
this challenge, FGD is introduced, as a fair graph condensa-
tion method. This is achieved by incorporating the coherence
metric into the GM loss function outlined in Eq. (8a). Par-
ticularly, the coherence metric is a bias calculator that cap-
tures the variance of the estimated sensitive group member-
ship. Similarly, to address the fairness issue of current graph
condensation methods, Mao et al. [2023] propose graph con-
densation with Adversarial Regularization (GCARe), which
is a method that directly regularizes the condensation process
to distill the knowledge of different subgroups fairly into re-
sulting graphs.

Distribution Matching. While GM-based methods offer

2Group fairness in algorithms ensures unbiased and fair treat-
ment across diverse demographic groups. It seeks to prevent any
form of discrimination or bias against specific groups within the al-
gorithmic decision-making process [Mehrabi et al., 2021]

benefits compared to traditional methods, it faces two chal-
lenges. First, the condensation process becomes computa-
tionally expensive when minimizing the GM loss due to the
need for computing second-order derivatives with respect to
GNN parameters. Second, the architecture-dependent nature
of the GM loss may hinder the condensed graph’s general-
ization to new GNN architectures [Liu et al., 2022]. Alter-
natively, the Distribution Matching (DM) approach seeks to
acquire synthetic graph data whose distribution closely ap-
proximates that of real data. To address the limitations of
GM-based methods, such as the reduced generalizability of
graph condensation across different GNN architectures and
the computational overhead, DM-based algorithms directly
optimize the distance between the two distributions using
metrics such as Maximum Mean Discrepancy (MMD) [Zhao
and Bilen, 2023]. For example, CaT [Liu et al., 2023c] up-
dates the condensed graph S using the DM objective function
to find the optimal synthetic graph as follows:

ℓMMD =
∑
c∈C

rc ·
∥∥∥Mean (Ec)−Mean

(
Ẽc

)∥∥∥2 , (11)

where C is the set of node classes, Ec and Ẽc are the em-
beddings of nodes with class c in the original and condensed
graph, respectively, and rc is the class ratio for class c. Like-
wise, GCDM [Liu et al., 2022] regards the original graph
as a distribution of receptive fields and seeks to synthesize
a smaller graph whose receptive fields share a similar distri-
bution to that of the original graph. Other works, such as
PUMA [Liu et al., 2023d] and FedGKD [Pan et al., 2023],
employ a similar approach for various applications in contin-
ual learning and federated learning, respectively.

Kernel Ridge Regression Methods
To mitigate heavy computation in the optimization problem
in Eq. (7a), KIDD [Xu et al., 2023], the first Kernel Ridge
Regression (KRR) method for graph condensation, simplifies
the optimization objective into a single-level problem by sub-
stituting the closed-form solution of the lower-level problem
into the upper-level objective. To implement KRR for graph-
level tasks, a graph kernel is essential [Xu et al., 2023]. Thus,
a Graph Neural Tangent Kernel (GNTK) [Du et al., 2019]
for the KRR graph classifier is chosen, as GNTK effectively
characterizes the training dynamics of GNNs and yields such
a closed-form solution. Concretely, if GNNθS in Eq. (7a)
is instantiated as the KRR and the squared loss is applied,
Eq. (7a) and Eq. (7b) can be instantiated as a single objective
function which is as follows:

min
S

LKRR =
1

2

∥∥∥yT −KT S (KSS + ϵI)
−1

yS

∥∥∥2 , (12a)

where ϵ > 0 is a KRR hyper-parameter, KT S is the kernel
matrix between original and synthetic graphs while KSS is
the kernel matrix between synthetic graphs3. Also, yS and
yT are the concatenated graph labels from real dataset and
synthetic dataset, respectively. Also, Zheng et al. [2023b]
propose SFGC, a structure-free graph condensation method

3Each kernel indicates infinitely wide multi-layer GNNs trained
by gradient descent through squared loss [Du et al., 2019]

using KRR that only outputs the condensed node features X′,
as the structure information of the real graphs is embedded in
X′.

Other Methods
Most graph condensation methods involve GNNs or graph fil-
ters when generating condensed graphs, which can be biased
to a specific spectrum and potentially miss the overall dis-
tribution of the real graph [Liu et al., 2023b]. To overcome
this, Liu et al. [2023b] propose to avoid spectrum bias in the
condensation process, which is caused by utilizing GNNs. To
obtain representation spaces similar to the ones in the real
graph, GCEM [Liu et al., 2023b] matches the representative
eigenbasis (the underlying graph structure) of real and syn-
thetic graphs during condensation. Nevertheless, due to the
differing sizes of the subspaces defined by the eigenvectors
of the real and synthetic graphs, direct alignment is not fea-
sible, prompting GCEM to match the node attributes in the
subspaces as an alternative, which will make them share sim-
ilar distributions:

Le =
C∑

c=1

K∑
k=1

∥∥hc,k − h′
c,k

∥∥2 , (13)

where hc,k and h′
c,k are the representation of the c-th class

center in k-th subspace for real and synthetic graphs, respec-
tively.

Gupta et al. [2023] investigate that in GM-based meth-
ods, the gradients of model weights are contingent on vari-
ous factors such as the specific GNN architecture and hyper-
parameters. This leads to a reduction in performance when
alternating the GNN during testing. Furthermore, the re-
quirement for the original graph for training in graph con-
densation still exists, causing computational and storage con-
straints. With this motivation in mind, MIRAGE [Gupta et
al., 2023] is introduced to condense multiple graphs to ad-
dress graph classification problems. It utilizes GNNs to break
down any graph into a collection of computation trees and
then extracts frequently co-occurring computation trees from
this set. It is shown that a concise set of top-k frequently co-
occurring trees can effectively capture a significant portion
of the distribution mass while preserving rich information.
Consequently, a GNN trained solely on the frequent tree sets
should be adequate for subsequent predictive tasks.

DisCo [Xiao et al., 2024] addresses scalability issues in
current Matching-based condensation methods through an it-
erative process that condenses nodes and edges separately. In
the node condensation step, synthetic nodes are generated us-
ing an MLP pre-trained on T while considering label distri-
bution. For the synthetic graph structure, edges are predicted
using a pre-trained link prediction model, matching the orig-
inal graph’s edge distribution. Notably, DisCo is found to be
significantly faster than existing methods because it conducts
separate condensation processes for edges and nodes.

Beyond the above efforts, GEOM [Zhang et al., 2024b]
makes the first attempt toward lossless graph condensation,
i.e., significantly reducing the graph size without any loss
in performance. It points out that the previous state-of-art
method SFGC [Zheng et al., 2023b] provides biased and lim-
ited supervisory signals to difficulty nodes while overlooking

easy nodes. To address this, GEOM introduces an expanding
window technique to adjust the matching range for difficult
and easy nodes, during the process of matching the training
trajectories between T and S. Remarkably, it achieves loss-
less graph condensation across standard benchmark datasets.

4 Applications
While the primary purpose of graph reduction was to enhance
the efficiency of graph algorithms, its versatility has led to its
advantageous utilization in a range of applications, as will be
elaborated upon in this section.

4.1 Neural Architecture Search
Neural architecture search (NAS) [Elsken et al., 2019; Ren et
al., 2021] focuses on identifying the most effective architec-
ture from a vast pool of potential models to enhance general-
ization in a given dataset. This technique is characterized by
its intensive computational demands, necessitating the train-
ing of numerous architectures on the full dataset and choosing
the top performer based on validation results. To address the
computational challenge in NAS for GNNs, graph conden-
sation methods are utilized for searching the best GNN ar-
chitecture [Jin et al., 2022b; Yang et al., 2023]. Specifically,
the architectures are trained on the condensed graph which
leads to significant speedup in the search process, and a reli-
able correlation in performance between training on the con-
densed dataset and the whole dataset is observed. Moreover,
Ding et al. [2022] introduce a dedicated graph condensation
method for NAS, highlighting that traditional graph conden-
sation objectives fall short of achieving this objective due to
their lack of generalization across GNNs. Particularly, it pro-
poses a condensation objective for preserving the outcome
of hyperparameter optimization and outperforms other graph
condensation methods in terms of finding the optimal archi-
tecture.

4.2 Continual Graph Learning
Continual learning [De Lange et al., 2021] aims to learn on
a stream of data from a stationary data distribution, which
requires tackling the issue of catastrophic forgetting, i.e.,
new data can interfere with current knowledge and erase it.
The common strategy is memory replay [Kemker and Kanan,
2018], which involves storing representative samples from
previous tasks in a buffer to recall knowledge when needed.
In the context of graphs, continual learning can be benefited
by informative reduced graphs. As introduced in Section 3.3
CaT [Liu et al., 2023c] is applied to continual graph learning
by condensing the incoming graph and updating the model
with condensed graphs, not the whole incoming graph. To
further improve CaT, Liu et al. [2023d] introduce PUMA
which utilizes pseudo-labeling to incorporate data from un-
labeled nodes, boosting the informativeness of the mem-
ory bank and addressing the problem of neglected unlabeled
nodes. In addition, the sparsification method [Zhang et al.,
2023] reduces the number of nodes and edges according to
the Ricci curvature evaluation and stores them into a replay
buffer for continual learning.

4.3 Visualization & Explanation
The reduced dataset is not only more accessible for algo-
rithms and computers to parse but also more friendly for
people to understand, which leads to the application of vi-
sualization and explanation. For instance, Zhao et al. [2018]
combine spectral graph coarsening method [Loukas and Van-
dergheynst, 2018] and sparsification methods [Feng, 2016] to
develop a nearly linear time algorithm for multilevel graph
visualization. Pyramid Transform [Shuman et al., 2015] se-
lects nodes corresponding to top-k eigenvector repeatedly and
creates a multi-resolution view of large graphs. In addition,
k-core decomposition has been widely used for graph visu-
alization and finding specific structural characteristics of net-
works [Alvarez-Hamelin et al., 2005]. As mentioned in Sec-
tion 3.2, some coarsening methods like k-snap [Tian et al.,
2008] and CANCEL [Zhang et al., 2010] are tailed for cus-
tomized discovery, which means the user can set the granu-
larity of the graph structure and then find perspectives they
are interested in. Graph condensation is also used for visu-
alization and explanation. For instance, GCond [Jin et al.,
2022b] observes patterns from original data by visualizing the
reduced graph; GDM [Nian et al., 2023] employs condensa-
tion to explain GNN behavior during the training process.

4.4 Privacy
It has been empirically investigated that reduced datasets of-
fer good privacy preservation [Dong et al., 2022]. For ex-
ample, Bonchi et al. [2014] show random sparsification can
achieve meaningful levels of anonymity while preserving fea-
tures of the original graph. Arora and Upadhyay [2019] con-
sider edge privacy and provide a mechanism for sparsification
of a graph that ensures differential privacy and approximates
the spectrum of the original graph. However, the trade-off be-
tween the degree of reduction and the utility, i.e., preservation
of key information, always exists. Dataset condensation can
be a promising technique to solve the dilemma [Dong et al.,
2022]. In a federated learning framework, where client de-
vices collaboratively contribute to model development by ag-
gregating their updates on a central server, there exists a risk
that a malicious server could infer sensitive local information
from the model updates sent by these clients. FedGKD [Pan
et al., 2023] trains models on condensed local graphs within
each client to mitigate the potential leakage of membership
of training set [Shokri et al., 2017].

4.5 Data Augmentation
Graph data augmentation [Zhao et al., 2022, 2021; Zhou
et al., 2022] is commonly used to enrich the data and im-
prove the model performance. Methods for graph reduction
can be employed to generate various perspectives of a graph
by repeatedly applying reductions at different ratios, thereby
augmenting the data for subsequent models. For example,
HARP [Chen et al., 2018] coarsens a graph in a series of lev-
els and then embeds the hierarchy of graphs from the coars-
est one to the original. In each step, HARP initializes node
embeddings in the finer-level graph using the mapped em-
beddings from super nodes in the coarser level. By employ-
ing various graphs in each iteration, this method augments
the training data. Meanwhile, MILE [Liang et al., 2021]

enhances this process by substituting the random walk em-
ployed in HARP with GNNs to improve the embedding qual-
ity and efficiency. DistMILE [He et al., 2021] advances the
MILE framework by adopting high-performance computing
techniques. As a condensation method, MSGC [Gao and Wu,
2023] initializes multiple small graphs by various connection
schemes and employs gradient matching to optimize them.
This process results in a variety of node embeddings sets, in-
creasing diversity and thereby augmenting the data.

5 Future Work
The field of graph reduction shows considerable potential,
with various algorithms already being implemented across
different domains. Despite achieving notable performance,
current methods in graph reduction still face several chal-
lenges and limitations. In this section, we will outline these
key challenges.

5.1 Comprehensive Evaluation
Despite the proliferation of graph reduction methods, a sig-
nificant gap exists in the field concerning the establishment
of a comprehensive evaluation methodology for these emerg-
ing approaches. As depicted in Table 3, the prevailing focus
in existing graph reduction methods has primarily revolved
around their ability to preserve specific graph properties or
sustain the performance of GNNs on particular downstream
tasks. On one hand, the development of novel reduction algo-
rithms should embrace a more inclusive approach, extending
to the preservation of a diverse range of graph properties like
homophily [Zhu et al., 2020; Gong et al., 2023] and accom-
modating various downstream tasks, such as node classifica-
tion, node clustering, link prediction, graph classification, and
more. On the other hand, there is an urgent need to broaden
the scope of evaluation criteria. This expansion should en-
compass not only the preservation of multiple graph proper-
ties but also cater to various downstream tasks concurrently.
By doing so, we can gain valuable insights into the practical
utility of reduced graph datasets across different applications
and domains.

5.2 Scalability
The majority of sparsification methods have attained linear-
time complexity. Similarly, most coarsening methods adopt
a local approach by emphasizing smaller neighborhood-level
computations to mitigate computational overhead. Conse-
quently, scalability is presently not a prominent concern for
these sparsification and coarsening strategies. Conversely,
graph condensation methods often come with higher compu-
tational costs, involving substantial memory usage and exe-
cution time due to their intricate optimization processes. De-
spite recent research efforts to accelerate graph condensation,
the scalability issue persists. This increased computational
overhead presents two primary challenges: (1) It becomes
increasingly difficult to generate an informative condensed
graph with a larger size without significantly increasing com-
putational demands. (2) Applying condensation to large-scale
graphs poses computational and resource challenges that re-
quire careful consideration and resolution.

5.3 Interpretability of Condensation Process
While graph condensation can itself serve as an explanation
or visualization of the original graph, the challenge lies in the
interpretability of the condensation process. First, since most
condensation methods transform the original one-hot bag-of-
words node attributes X into continuous synthetic node at-
tributes X′, it remains unclear how to interpret the acquired
condensed features. Second, there is the question of how to
interpret the condensed graph structure. In much of the ex-
isting research on condensation, a clear correspondence be-
tween synthetic and real nodes is often lacking, giving rise
to doubts about how effectively synthetic nodes encapsulate
information from their real graph counterparts. One poten-
tial approach to addressing this issue is to explore the devel-
opment of a general framework for enhancing interpretabil-
ity during the graph condensation process and incorporating
GNN interpretability techniques into this endeavor [Ying et
al., 2019; Yuan et al., 2020]. Furthermore, it is essential to
conduct further theoretical analysis to complement and ex-
pand upon the insights presented by Jin et al. [2022a].

5.4 Distribution Shift
It is a common observation that GNNs often exhibit poor gen-
eralization on a test set when there exists a disparity between
the distributions of the training and test sets [Wu et al., 2022a;
Li et al., 2022]. When GNNs are trained on reduced graphs
and evaluated on graphs from the original distribution, a dis-
tribution shift may occur due to the reduction process, which
eliminates substantial amounts of graph elements. However,
consensus is lacking regarding the definition of graph data
distribution or the selection of specific properties to repre-
sent the distribution accurately. While several condensation
methods employ a specific type of distribution matching as
we mentioned in Section 2, other measures of distribution
may change after the reduction, e.g., size shift [Buffelli et
al., 2022]. Future graph reduction should consider the poten-
tial distribution shift issues and preserve distribution-related
properties to enhance the generalization of models trained on
reduced graphs.

5.5 Robustness
Node attributes after graph reduction risk losing fidelity, pos-
ing challenges in distinguishing them from the original graph
structure. This makes them susceptible to data poisoning
attacks, with injected triggers during the reduction process
serving as potential backdoor vulnerabilities as it happens in
other data modalities like image [Wang et al., 2018]. To im-
prove the distillation process against such attacks, Tsilivis et
al. [2022] have combined the KIP (Kernel Including Point)
[Nguyen et al., 2020, 2021] method using adversarial training
to improve the robustness of the distilled dataset. However,
there is a significant gap in systematic evaluation concerning
their robustness for graph modality. This oversight extends to
a lack of development in both attack strategies and potential
defenses tailored to reduced graph structures. It is imperative
that future studies investigate these aspects, focusing on the
development of methodologies to assess and enhance the ro-
bustness of reduced graphs. Exploring these directions will

not only provide a deeper understanding of the vulnerabili-
ties inherent in reduced graphs but also lead to the creation of
more resilient graph reduction techniques.

5.6 Diverse Types of Graphs
Existing graph reduction techniques have primarily concen-
trated on simple non-attributed or attributed graphs. Nonethe-
less, graph data in real-world scenarios is increasingly intri-
cate. This complexity is evidenced by the presence of het-
erophilous graphs [Zheng et al., 2022], heterogeneous graphs
[Bing et al., 2023], directed graphs [Aho et al., 1972], knowl-
edge graphs [Schlichtkrull et al., 2018], hypergraphs [An-
telmi et al., 2023] and dynamic graphs [Skarding et al., 2021].
Each graph type introduces distinct characteristics, demand-
ing a thorough comprehension of their structures and the
adoption of varied graph reduction methods. While we have
discussed works [Generale et al., 2022; Sugiyama and Sato,
2023] related to some of the aforementioned graph types, the
remainder are yet to be fully explored.

6 Conclusion
In this paper, we offer a structured and forward-looking sur-
vey of graph reduction. We begin by establishing a formal
definition of graph reduction and then develop a detailed hi-
erarchical taxonomy that systematically organizes the diverse
methodologies in this area. Our survey divides graph reduc-
tion techniques into three primary categories: sparsification,
coarsening, and condensation. Each of these groups repre-
sents a unique approach to reducing graph complexity while
preserving essential properties. Within each category, we sys-
tematically delve into the technical intricacies of prominent
methods and highlight their practical applications in various
real-world scenarios. Moreover, we shed light on the existing
challenges within this domain and pinpoint potential direc-
tions for future research endeavors. Our aim is to inspire and
guide upcoming studies, contributing to the ongoing evolu-
tion and advancement of graph reduction methodologies.

References
A. V. Aho, M. R. Garey, and J. D. Ullman. The transitive re-

duction of a directed graph. SIAM Journal on Computing,
1(2):131–137, 1972.

Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph,
and José Soares. On sparse spanners of weighted graphs.
Discrete & Computational Geometry, 9(1):81–100, 1993.

J Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and
Alessandro Vespignani. Large scale networks fingerprint-
ing and visualization using the k-core decomposition. Ad-
vances in neural information processing systems, 18, 2005.

Sorour E Amiri, Bijaya Adhikari, Aditya Bharadwaj, and
B Aditya Prakash. Netgist: Learning to generate task-
based network summaries. In 2018 IEEE International
Conference on Data Mining (ICDM), pages 857–862.
IEEE, 2018.

David G Anderson, Ming Gu, and Christopher Melgaard. An
efficient algorithm for unweighted spectral graph sparsifi-
cation. arXiv preprint arXiv:1410.4273, 2014.

Alessia Antelmi, Gennaro Cordasco, Mirko Polato, Vittorio
Scarano, Carmine Spagnuolo, and Dingqi Yang. A survey
on hypergraph representation learning. ACM Computing
Surveys, 56(1):1–38, 2023.

Raman Arora and Jalaj Upadhyay. On differentially private
graph sparsification and applications. In Advances in Neu-
ral Information Processing Systems, volume 32, 2019.

Surender Baswana and Sandeep Sen. A simple linear time al-
gorithm for computing a (2 k—1)-spanner of o (n 1+ 1/k)
size in weighted graphs. In Automata, Languages and Pro-
gramming: 30th International Colloquium, ICALP 2003
Eindhoven, The Netherlands, June 30–July 4, 2003 Pro-
ceedings 30, pages 384–396. Springer, 2003.

Joshua D Batson, Daniel A Spielman, and Nikhil Srivas-
tava. Twice-ramanujan sparsifiers. In Proceedings of the
forty-first annual ACM symposium on Theory of comput-
ing, pages 255–262, 2009.

Joshua Batson, Daniel A Spielman, Nikhil Srivastava, and
Shang-Hua Teng. Spectral sparsification of graphs: theory
and algorithms. Communications of the ACM, 56(8):87–
94, 2013.

Maham Anwar Beg, Muhammad Ahmad, Arif Zaman, and
Imdadullah Khan. Scalable approximation algorithm for
graph summarization. In Advances in Knowledge Dis-
covery and Data Mining: 22nd Pacific-Asia Conference,
PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018,
Proceedings, Part III 22, pages 502–514. Springer, 2018.

Rui Bing, Guan Yuan, Mu Zhu, Fanrong Meng, Huifang Ma,
and Shaojie Qiao. Heterogeneous graph neural networks
analysis: a survey of techniques, evaluations and appli-
cations. Artificial Intelligence Review, 56(8):8003–8042,
2023.

Francesco Bonchi, Aristides Gionis, and Tamir Tassa. Iden-
tity obfuscation in graphs through the information theoretic
lens. Information Sciences, 275:232–256, 2014.

Simon Brandeis, Adrian Jarret, and Pierre Sevestre. About
graph degeneracy, representation learning and scalability.
arXiv e-prints, pages arXiv–2009, 2020.

Gecia Bravo Hermsdorff and Lee Gunderson. A unifying
framework for spectrum-preserving graph sparsification
and coarsening. Advances in Neural Information Process-
ing Systems, 32, 2019.

Davide Buffelli, Pietro Liò, and Fabio Vandin. Sizeshiftreg:
a regularization method for improving size-generalization
in graph neural networks. Advances in Neural Information
Processing Systems, 35:31871–31885, 2022.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsen-
ing with neural networks. In 9th International conference
on Learning Representations, 2021.

Jie Chen and Ilya Safro. Algebraic distance on graphs. SIAM
Journal on Scientific Computing, 33(6):3468–3490, 2011.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena.
Harp: Hierarchical representation learning for networks.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and
Zhangyang Wang. A unified lottery ticket hypothesis for
graph neural networks. In International conference on ma-
chine learning, pages 1695–1706. PMLR, 2021.

Jie Chen, Yousef Saad, and Zechen Zhang. Graph coarsen-
ing: from scientific computing to machine learning. SeMA
Journal, pages 1–37, 2022.

Fan Chung. Laplacians and the cheeger inequality for di-
rected graphs. Annals of Combinatorics, 9:1–19, 2005.

Kinkar Ch Das, Seyed Ahmad Mojallal, and Vilmar Trevisan.
Distribution of laplacian eigenvalues of graphs. Linear Al-
gebra and its Applications, 508:48–61, 2016.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and
Tinne Tuytelaars. A continual learning survey: Defying
forgetting in classification tasks. IEEE transactions on pat-
tern analysis and machine intelligence, 44(7):3366–3385,
2021.

Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted
graph cuts without eigenvectors a multilevel approach.
IEEE transactions on pattern analysis and machine intel-
ligence, 29(11):1944–1957, 2007.

Charles Dickens, Eddie Huang, Aishwarya Reganti, Jiong
Zhu, Karthik Subbian, and Danai Koutra. Graph coars-
ening via convolution matching for scalable graph neural
network training. arXiv preprint arXiv:2312.15520, 2023.

Mucong Ding, Xiaoyu Liu, Tahseen Rabbani, Teresa
Ranadive, Tai-Ching Tuan, and Furong Huang. Faster hy-
perparameter search for gnns via calibrated dataset conden-
sation. 2022.

Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free:
How does dataset condensation help privacy? In Inter-
national Conference on Machine Learning, pages 5378–
5396. PMLR, 2022.

Florian Dorfler and Francesco Bullo. Kron reduction of
graphs with applications to electrical networks. IEEE
Transactions on Circuits and Systems I: Regular Papers,
60(1):150–163, 2012.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barn-
abas Poczos, Ruosong Wang, and Keyulu Xu. Graph neural
tangent kernel: Fusing graph neural networks with graph
kernels. Advances in neural information processing sys-
tems, 32, 2019.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neu-
ral architecture search: A survey. The Journal of Machine
Learning Research, 20(1):1997–2017, 2019.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang
Tang, and Dawei Yin. Graph neural networks for so-
cial recommendation. In The world wide web conference,
pages 417–426, 2019.

Haw-ren Fang, Sophia Sakellaridi, and Yousef Saad. Mul-
tilevel manifold learning with application to spectral clus-
tering. In Proceedings of the 19th ACM international con-
ference on Information and knowledge management, pages
419–428, 2010.

Junfeng Fang, Xinglin Li, Yongduo Sui, Yuan Gao, Guibin
Zhang, Kun Wang, Xiang Wang, and Xiangnan He. Exgc:
Bridging efficiency and explainability in graph condensa-
tion. In WWW. ACM, 2024.

Qizhang Feng, Zhimeng Jiang, Ruiquan Li, Yicheng Wang,
Na Zou, Jiang Bian, and Xia Hu. Fair graph distillation.
In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023.

Zhuo Feng. Spectral graph sparsification in nearly-linear time
leveraging efficient spectral perturbation analysis. In Pro-
ceedings of the 53rd Annual Design Automation Confer-
ence, pages 1–6, 2016.

Jian Gao and Jianshe Wu. Multiple sparse graphs condensa-
tion. Knowledge-Based Systems, 278:110904, 2023.

Xinyi Gao, Tong Chen, Yilong Zang, Wentao Zhang, Quoc
Viet Hung Nguyen, Kai Zheng, and Hongzhi Yin. Graph
condensation for inductive node representation learning.
arXiv preprint arXiv:2307.15967, 2023.

Vikas Garg and Tommi Jaakkola. Solving graph compres-
sion via optimal transport. Advances in Neural Information
Processing Systems, 32, 2019.

Alessandro Generale, Till Blume, and Michael Cochez. Scal-
ing r-gcn training with graph summarization. In Compan-
ion Proceedings of the Web Conference 2022, pages 1073–
1082, 2022.

Jiahui Geng, Zongxiong Chen, Yuandou Wang, Herbert
Woisetschlaeger, Sonja Schimmler, Ruben Mayer, Zhim-
ing Zhao, and Chunming Rong. A survey on dataset dis-
tillation: Approaches, applications and future directions.
arXiv preprint arXiv:2305.01975, 2023.

Shengbo Gong, Jiajun Zhou, Chenxuan Xie, and Qi Xuan.
Neighborhood homophily-based graph convolutional net-
work. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management,
CIKM ’23, 2023.

Mridul Gupta, Sahil Manchanda, Sayan Ranu, and
Hariprasad Kodamana. Mirage: Model-agnostic graph
distillation for graph classification. arXiv preprint
arXiv:2310.09486, 2023.

Ivan Gutman and Bo Zhou. Laplacian energy of a graph.
Linear Algebra and its applications, 414(1):29–37, 2006.

Yuntian He, Saket Gurukar, Pouya Kousha, Hari Subra-
moni, Dhabaleswar K Panda, and Srinivasan Parthasarathy.
Distmile: a distributed multi-level framework for scalable
graph embedding. In 2021 IEEE 28th International Con-
ference on High Performance Computing, Data, and Ana-
lytics (HiPC), pages 282–291. IEEE, 2021.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yux-
iao Dong, and Jure Leskovec. Ogb-lsc: A large-scale chal-
lenge for machine learning on graphs. NeurIPS, 34, 2021.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu,
and Min Zhou. Scaling up graph neural networks via graph
coarsening. In Proceedings of the 27th ACM SIGKDD con-
ference on knowledge discovery & data mining, pages 675–
684, 2021.

Martin Imre, Jun Tao, Yongyu Wang, Zhiqiang Zhao, Zhuo
Feng, and Chaoli Wang. Spectrum-preserving sparsifica-
tion for visualization of big graphs. Computers & Graph-
ics, 87:89–102, 2020.

Roberto Interdonato, Matteo Magnani, Diego Perna, Andrea
Tagarelli, and Davide Vega. Multilayer network simplifica-
tion: approaches, models and methods. Computer Science
Review, 36:100246, 2020.

Shalev Itzkovitz, Reuven Levitt, Nadav Kashtan, Ron Milo,
Michael Itzkovitz, and Uri Alon. Coarse-graining and self-
dissimilarity of complex networks. Physical Review E,
71(1):016127, 2005.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-
eterization with gumbel-softmax. In International Confer-
ence on Learning Representations, 2016.

Zhihao Jia, Sina Lin, Rex Ying, Jiaxuan You, Jure Leskovec,
and Alex Aiken. Redundancy-free computation for graph
neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, pages 997–1005, 2020.

Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing
Zhang, Jiliang Tang, and Bing Yin. Condensing graphs
via one-step gradient matching. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pages 720–730, 2022.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang
Tang, and Neil Shah. Graph condensation for graph neural
networks. In International Conference on Learning Repre-
sentations, 2022.

George Karypis and Vipin Kumar. Metis: A software package
for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matrices.
1997.

Ronald Kemker and Christopher Kanan. Fearnet: Brain-
inspired model for incremental learning. In International
Conference on Learning Representations, 2018.

Kifayat Ullah Khan, Waqas Nawaz, and Young-Koo Lee. Set-
based approximate approach for lossless graph summariza-
tion. Computing, 97:1185–1207, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. In International
Conference on Learning Representations, 2016.

Manoj Kumar, Anurag Sharma, Shashwat Saxena, and
Sandeep Kumar. Featured graph coarsening with similar-
ity guarantees. In International Conference on Machine
Learning, pages 17953–17975. PMLR, 2023.

Amy N Langville and Carl D Meyer. Deeper inside pagerank.
Internet Mathematics, 1(3), 2004.

Yin Tat Lee and He Sun. Constructing linear-sized spectral
sparsification in almost-linear time. SIAM Journal on Com-
puting, 47(6):2315–2336, 2018.

Kristen LeFevre and Evimaria Terzi. Grass: Graph structure
summarization. In Proceedings of the 2010 SIAM Interna-
tional Conference on Data Mining, pages 454–465. SIAM,
2010.

Haoyang Li, Xin Wang, Ziwei Zhang, and Wenwu Zhu. Out-
of-distribution generalization on graphs: A survey. arXiv
preprint arXiv:2202.07987, 2022.

Gaotang Li, Marlena Duda, Xiang Zhang, Danai Koutra, and
Yujun Yan. Interpretable sparsification of brain graphs:
Better practices and effective designs for graph neural net-
works. In Proceedings of the 29th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, KDD ’23,
page 1223–1234, New York, NY, USA, 2023. Association
for Computing Machinery.

Xinglin Li, Kun Wang, Hanhui Deng, Yuxuan Liang, and
Di Wu. Attend who is weak: Enhancing graph conden-
sation via cross-free adversarial training. arXiv preprint
arXiv:2311.15772, 2023.

Jiongqian Liang, Saket Gurukar, and Srinivasan
Parthasarathy. Mile: A multi-level framework for
scalable graph embedding. In Proceedings of the Inter-
national AAAI Conference on Web and Social Media,
volume 15, pages 361–372, 2021.

Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra.
Graph summarization methods and applications: A survey.
ACM computing surveys (CSUR), 51(3):1–34, 2018.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and
Xia Hu. Exact: Scalable graph neural networks training
via extreme activation compression. In International Con-
ference on Learning Representations, 2021.

Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song.
Graph condensation via receptive field distribution match-
ing. arXiv preprint arXiv:2206.13697, 2022.

Chuang Liu, Xueqi Ma, Yibing Zhan, Liang Ding, Dapeng
Tao, Bo Du, Wenbin Hu, and Danilo P Mandic. Compre-
hensive graph gradual pruning for sparse training in graph
neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 2023.

Yang Liu, Deyu Bo, and Chuan Shi. Graph condensation
via eigenbasis matching. arXiv preprint arXiv:2310.09202,
2023.

Yilun Liu, Ruihong Qiu, and Zi Huang. Cat: Balanced contin-
ual graph learning with graph condensation. arXiv preprint
arXiv:2309.09455, 2023.

Yilun Liu, Ruihong Qiu, Yanran Tang, Hongzhi Yin, and
Zi Huang. Puma: Efficient continual graph learning with
graph condensation. arXiv preprint arXiv:2312.14439,
2023.

Oren E Livne and Achi Brandt. Lean algebraic multigrid
(lamg): Fast graph laplacian linear solver. SIAM Journal
on Scientific Computing, 34(4):B499–B522, 2012.

Andreas Loukas and Pierre Vandergheynst. Spectrally ap-
proximating large graphs with smaller graphs. In Inter-
national Conference on Machine Learning, pages 3237–
3246. PMLR, 2018.

Andreas Loukas. Graph reduction with spectral and cut guar-
antees. J. Mach. Learn. Res., 20(116):1–42, 2019.

Yao Ma and Jiliang Tang. Deep learning on graphs. Cam-
bridge University Press, 2021.

Runze Mao, Wenqi Fan, and Qing Li. Gcare: Mitigating sub-
group unfairness in graph condensation through adversarial
regularization. Applied Sciences, 13(16):9166, 2023.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina
Lerman, and Aram Galstyan. A survey on bias and fairness
in machine learning. ACM computing surveys (CSUR),
54(6):1–35, 2021.

Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava.
Graph summarization with bounded error. In Proceedings
of the 2008 ACM SIGMOD international conference on
Management of data, pages 419–432, 2008.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset
meta-learning from kernel ridge-regression. arXiv preprint
arXiv:2011.00050, 2020.

Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon
Lee. Dataset distillation with infinitely wide convolutional
networks. Advances in Neural Information Processing Sys-
tems, 34:5186–5198, 2021.

Yi Nian, Wei Jin, and Lu Lin. In-process global interpretation
for graph learning via distribution matching. arXiv preprint
arXiv:2306.10447, 2023.

Qiying Pan, Ruofan Wu, Tengfei Liu, Tianyi Zhang, Yifei
Zhu, and Weiqiang Wang. Fedgkd: Unleashing the power
of collaboration in federated graph neural networks. arXiv
preprint arXiv:2309.09517, 2023.

Gabriel Peyré, Marco Cuturi, et al. Computational opti-
mal transport: With applications to data science. Founda-
tions and Trends® in Machine Learning, 11(5-6):355–607,
2019.

Manish Purohit, B Aditya Prakash, Chanhyun Kang, Yao
Zhang, and VS Subrahmanian. Fast influence-based coars-
ening for large networks. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pages 1296–1305, 2014.

Noam Razin, Tom Verbin, and Nadav Cohen. On the abil-
ity of graph neural networks to model interactions between
vertices. In Advances in Neural Information Processing
Systems, 2023.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,
Zhihui Li, Xiaojiang Chen, and Xin Wang. A comprehen-
sive survey of neural architecture search: Challenges and
solutions. ACM Computing Surveys (CSUR), 54(4):1–34,
2021.

Matteo Riondato, David Garcı́a-Soriano, and Francesco
Bonchi. Graph summarization with quality guarantees.
Data mining and knowledge discovery, 31:314–349, 2017.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou
Huang. Dropedge: Towards deep graph convolu-
tional networks on node classification. arXiv preprint
arXiv:1907.10903, 2019.

Noveen Sachdeva and Julian McAuley. Data distillation: A
survey. arXiv preprint arXiv:2301.04272, 2023.

Ilya Safro, Peter Sanders, and Christian Schulz. Advanced
coarsening schemes for graph partitioning. Journal of Ex-
perimental Algorithmics (JEA), 19:1–24, 2015.

Guillaume Salha, Romain Hennequin, Viet Anh Tran, and
Michalis Vazirgiannis. A degeneracy framework for scal-
able graph autoencoders. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, pages
3353–3359, 2019.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne
Van Den Berg, Ivan Titov, and Max Welling. Modeling re-
lational data with graph convolutional networks. In The Se-
mantic Web: 15th International Conference, ESWC 2018,
Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15,
pages 593–607. Springer, 2018.

Ozan Sener and Silvio Savarese. Active learning for convo-
lutional neural networks: A core-set approach. In Interna-
tional Conference on Learning Representations, 2018.

Nasrin Shabani, Jia Wu, Amin Beheshti, Jin Foo, Ambreen
Hanif, and Maryam Shahabikargar. A survey on graph
neural networks for graph summarization. arXiv preprint
arXiv:2302.06114, 2023.

Baoxu Shi and Tim Weninger. Proje: Embedding projec-
tion for knowledge graph completion. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 31,
2017.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly
Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE symposium on security and
privacy (SP), pages 3–18. IEEE, 2017.

David I Shuman, Mohammad Javad Faraji, and Pierre
Vandergheynst. A multiscale pyramid transform for
graph signals. IEEE Transactions on Signal Processing,
64(8):2119–2134, 2015.

Si Si, Felix Yu, Ankit Singh Rawat, Cho-Jui Hsieh, and San-
jiv Kumar. Serving graph compression for graph neural
networks. In International Conference on Learning Repre-
sentations, 2023.

Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial.
Foundations and modeling of dynamic networks using dy-
namic graph neural networks: A survey. IEEE Access,
9:79143–79168, 2021.

Xiran Song, Jianxun Lian, Hong Huang, Zihan Luo, Wei
Zhou, Xue Lin, Mingqi Wu, Chaozhuo Li, Xing Xie, and
Hai Jin. xgcn: An extreme graph convolutional network
for large-scale social link prediction. In Proceedings of the
ACM Web Conference 2023, pages 349–359, 2023.

Daniel A Spielman and Nikhil Srivastava. Graph sparsifica-
tion by effective resistances. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pages
563–568, 2008.

Felipe Petroski Such, Shagan Sah, Miguel Alexander
Dominguez, Suhas Pillai, Chao Zhang, Andrew Michael,
Nathan D Cahill, and Raymond Ptucha. Robust spa-
tial filtering with graph convolutional neural networks.

IEEE Journal of Selected Topics in Signal Processing,
11(6):884–896, 2017.

Tomohiro Sugiyama and Kazuhiro Sato. Kron reduction and
effective resistance of directed graphs. SIAM Journal on
Matrix Analysis and Applications, 44(1):270–292, 2023.

Yuanyuan Tian, Richard A Hankins, and Jignesh M Patel. Ef-
ficient aggregation for graph summarization. In Proceed-
ings of the 2008 ACM SIGMOD international conference
on Management of data, pages 567–580, 2008.

Nikolaos Tsilivis, Jingtong Su, and Julia Kempe. Can we
achieve robustness from data alone? arXiv preprint
arXiv:2207.11727, 2022.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Em-
manuel Müller. Graph clustering with graph neural net-
works. Journal of Machine Learning Research, 24(127):1–
21, 2023.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and
Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

Hao Wang, Jiaxin Yang, and Jianrong Wang. Leverage large-
scale biological networks to decipher the genetic basis of
human diseases using machine learning. Artificial Neural
Networks, pages 229–248, 2021.

Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, and Qing Li.
Fast graph condensation with structure-based neural tan-
gent kernel. Proceedings of the ACM Web Conference,
2024.

Max Welling. Herding dynamical weights to learn. In Pro-
ceedings of the 26th Annual International Conference on
Machine Learning, pages 1121–1128, 2009.

Ryan Wickman, Xiaofei Zhang, and Weizi Li. A generic
graph sparsification framework using deep reinforcement
learning. In 2022 IEEE International Conference on Data
Mining (ICDM), pages 1221–1226. IEEE, 2022.

Hang-Yang Wu and Yi-Ling Chen. Graph sparsification with
generative adversarial network. In 2020 IEEE Interna-
tional Conference on Data Mining (ICDM), pages 1328–
1333. IEEE, 2020.

Ye Wu, Zhinong Zhong, Wei Xiong, and Ning Jing. Graph
summarization for attributed graphs. In 2014 International
conference on information science, electronics and electri-
cal engineering, volume 1, pages 503–507. IEEE, 2014.

Mengmeng Wu, Wanwen Zeng, Wenqiang Liu, Hairong Lv,
Ting Chen, and Rui Jiang. Leveraging multiple gene net-
works to prioritize gwas candidate genes via network rep-
resentation learning. Methods, 145:41–50, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and S Yu Philip. A comprehensive survey
on graph neural networks. IEEE transactions on neural
networks and learning systems, 32(1):4–24, 2020.

Qitian Wu, Hengrui Zhang, Junchi Yan, and David Wipf.
Handling distribution shifts on graphs: An invariance per-
spective. arXiv preprint arXiv:2202.02466, 2022.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui.
Graph neural networks in recommender systems: a survey.
ACM Computing Surveys, 55(5):1–37, 2022.

Zhenbang Xiao, Shunyu Liu, Yu Wang, Tongya Zheng, and
Mingli Song. Disentangled condensation for large-scale
graphs. arXiv preprint arXiv:2401.12231, 2024.

Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Ma-
hashweta Das, Hao Yang, and Hanghang Tong. Kernel
ridge regression-based graph dataset distillation. In Pro-
ceedings of the 29th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining, pages 2850–2861, 2023.

Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng
Fu, Hao Tang, Yang You, and Jianxin Li. Does graph dis-
tillation see like vision dataset counterpart? arXiv preprint
arXiv:2310.09192, 2023.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik,
and Jure Leskovec. Gnnexplainer: Generating explana-
tions for graph neural networks. Advances in neural in-
formation processing systems, 32, 2019.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn:
Towards model-level explanations of graph neural net-
works. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Min-
ing, pages 430–438, 2020.

Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Sri-
vastava, Andrey Malevich, Rajgopal Kannan, Viktor
Prasanna, Long Jin, and Ren Chen. Decoupling the depth
and scope of graph neural networks. Advances in Neural
Information Processing Systems, 34:19665–19679, 2021.

Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang,
and Xia Hu. Data-centric ai: Perspectives and challenges.
In Proceedings of the 2023 SIAM International Conference
on Data Mining (SDM), pages 945–948. SIAM, 2023.

Ning Zhang, Yuanyuan Tian, and Jignesh M Patel.
Discovery-driven graph summarization. In 2010 IEEE
26th international conference on data engineering (ICDE
2010), pages 880–891. IEEE, 2010.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Ricci
curvature-based graph sparsification for continual graph
representation learning. IEEE Transactions on Neural Net-
works and Learning Systems, 2023.

Tianle Zhang, Yuchen Zhang, Kun Wang, Kai Wang, Beining
Yang, Kaipeng Zhang, Wenqi Shao, Ping Liu, Joey Tianyi
Zhou, and Yang You. Two trades is not baffled: Con-
dense graph via crafting rational gradient matching. arXiv
preprint arXiv:2402.04924, 2024.

Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan
Liang, Xavier Bresson, Wei Jin, and Yang You. Navigat-
ing complexity: Toward lossless graph condensation via
expanding window matching. 2024.

Bo Zhao and Hakan Bilen. Dataset condensation with dis-
tribution matching. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
6514–6523, 2023.

Zhiqiang Zhao, Yongyu Wang, and Zhuo Feng. Nearly-
linear time spectral graph reduction for scalable graph
partitioning and data visualization. arXiv preprint
arXiv:1812.08942, 2018.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. arXiv preprint
arXiv:2006.05929, 2020.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford,
Meng Jiang, and Neil Shah. Data augmentation for graph
neural networks. In Proceedings of the aaai conference
on artificial intelligence, volume 35, pages 11015–11023,
2021.

Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu,
Stephan Günneman, Neil Shah, and Meng Jiang. Graph
data augmentation for graph machine learning: A survey.
arXiv preprint arXiv:2202.08871, 2022.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao
Ni, Wenchao Yu, Haifeng Chen, and Wei Wang. Ro-
bust graph representation learning via neural sparsification.
In International Conference on Machine Learning, pages
11458–11468. PMLR, 2020.

Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and
Philip S Yu. Graph neural networks for graphs with het-
erophily: A survey. arXiv preprint arXiv:2202.07082,
2022.

Xin Zheng, Yixin Liu, Zhifeng Bao, Meng Fang, Xia Hu,
Alan Wee-Chung Liew, and Shirui Pan. Towards data-
centric graph machine learning: Review and outlook. arXiv
preprint arXiv:2309.10979, 2023.

Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung
Nguyen, Xingquan Zhu, and Shirui Pan. Structure-free
graph condensation: From large-scale graphs to condensed
graph-free data. arXiv preprint arXiv:2306.02664, 2023.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang,
Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
and Maosong Sun. Graph neural networks: A review of
methods and applications. AI open, 1:57–81, 2020.

Jiajun Zhou, Chenxuan Xie, Zhenyu Wen, Xiangyu Zhao, and
Qi Xuan. Data augmentation on graphs: A survey. arXiv
preprint arXiv:2212.09970, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Le-
man Akoglu, and Danai Koutra. Beyond homophily in
graph neural networks: Current limitations and effective
designs. Advances in neural information processing sys-
tems, 33:7793–7804, 2020.

Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu
Zhang, Qiang Liu, Carl Yang, and Shu Wu. A survey on
graph structure learning: Progress and opportunities. arXiv
preprint arXiv:2103.03036, 2021.

	Introduction
	Taxonomy of Graph Reduction
	Methodology
	Graph Sparsification
	Preserving Graph Properties
	Preserving Performance

	Graph Coarsening
	Reconstruction-Based Methods
	Reconstruction-Free Methods
	Remarks on Graph Coarsening

	Graph Condensation
	Matching-Based Methods
	Kernel Ridge Regression Methods
	Other Methods

	Applications
	Neural Architecture Search
	Continual Graph Learning
	Visualization & Explanation
	Privacy
	Data Augmentation

	Future Work
	Comprehensive Evaluation
	Scalability
	Interpretability of Condensation Process
	Distribution Shift
	Robustness
	Diverse Types of Graphs

	Conclusion

