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Abstract
Molecule discovery plays a crucial role in vari-
ous scientific fields, advancing the design of tai-
lored materials and drugs. Traditional methods for
molecule discovery follow a trial-and-error pro-
cess, which are both time-consuming and costly,
while computational approaches such as artificial
intelligence (AI) have emerged as revolutionary
tools to expedite various tasks, like molecule-
caption translation. Despite the importance of
molecule-caption translation for molecule discov-
ery, most of the existing methods heavily rely on
domain experts, require excessive computational
cost, and suffer from poor performance. On the
other hand, Large Language Models (LLMs), like
ChatGPT, have shown remarkable performance in
various cross-modal tasks due to their great power-
ful capabilities in natural language understanding,
generalization, and reasoning, which provides un-
precedented opportunities to advance molecule
discovery. To address the above limitations, in
this work, we propose a novel LLMs-based frame-
work (MolReGPT) for molecule-caption transla-
tion, where a retrieval-based prompt paradigm is
introduced to empower molecule discovery with
LLMs like ChatGPT without fine-tuning. More
specifically, MolReGPT leverages the principle of
molecular similarity to retrieve similar molecules
and their text descriptions from a local database
to ground the generation of LLMs through in-
context few-shot molecule learning. We evalu-
ate the effectiveness of MolReGPT via molecule-
caption translation, which includes molecule un-
derstanding and text-based molecule generation.
Experimental results show that MolReGPT out-
performs fine-tuned models like MolT5-base with-
out any additional training. To the best of our
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knowledge, MolReGPT is the first work to lever-
age LLMs in molecule-caption translation for ad-
vancing molecule discovery. Our implementa-
tion is available at: https://github.com/
phenixace/MolReGPT

1. Introduction
Molecules are the fundamental building blocks of matter,
comprising the intricate fabric of the world around us. As
the foundation of all chemical compounds, molecules are
composed of two or more atoms that are chemically bonded
together, and they retain the unique chemical properties dic-
tated by their specific structures (Xu et al., 2023). With a
comprehensive understanding of molecules, scientists can
effectively design materials, drugs, and products with tai-
lored characteristics and functionalities, impacting a variety
of crucial fields such as chemistry (Wang et al., 2023; Cuz-
zucoli Crucitti et al., 2023; Weng et al., 2021), pharmacol-
ogy (Patani & LaVoie, 1996; Anderson, 2003; Ding et al.,
2019), material science (Curtarolo et al., 2013; Higuchi
et al., 2023), and environmental science (Ali et al., 2023; Lv
et al., 2023). One notable example is in the pharmaceutical
industry during the COVID-19 pandemic, where the discov-
ery of new molecules has the potential to revolutionize not
only the development of groundbreaking treatments, thera-
pies (Gupta et al., 2023), and vaccines against viruses but
also a wide range of other diseases in the coming decade
(Osamor et al., 2023).

However, traditional molecule discovery lies in the long, ex-
pensive, and failure-prone process that requires navigating
a complex landscape of molecule structures and biologi-
cal interactions, with limitations in scalability, precision,
and data management (Hajduk & Greer, 2007). To over-
come these challenges, computational technologies such
as artificial intelligence (AI) have emerged as powerful
tools to expedite the discovery of new molecules (Urbina
& Ekins, 2022). Specifically, molecules can be represented
as simplified molecular-input line-entry system (SMILES)
strings (Weininger, 1988; Cao et al., 2022). As shown in
Figure 1 (a), the structure of Phenol can be represented as
a SMILES sequence, which is made of a Benzene ring and
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a Hydroxy. Such SMILES representations can be effec-
tively processed by deep sequence models like Recurrent
Neural Networks (Arús-Pous et al., 2019; Grisoni et al.,
2020) and Transformers (Honda et al., 2019; Yoshikai et al.,
2023). These AI-powered models enable researchers to un-
derstand molecular properties and functionalities and create
promising compounds in a more efficient and cost-effective
manner. For example, in order to generate new molecules
and better understand them, a novel task that translates be-
tween molecules and natural language has been proposed
by using language models like Text2Mol (Edwards et al.,
2021) and MolT5 (Edwards et al., 2022). It consists of
two sub-tasks: molecule captioning (Mol2Cap) and text-
based molecule generation (Cap2Mol). More specifically,
as shown in Figure 1 (b-c), the goal of molecule captioning
is to generate a text caption to describe a SMILES string
of the molecule for providing humans with a better under-
standing of molecule, while text-based molecule generation
aims to generate the corresponding molecule (i.e., SMILES
string) based on a given natural language description (e.g.,
properties and functional groups). Despite the impressive
progress that has been made in the molecule-caption trans-
lation task, the majority of existing advanced approaches
suffer from several limitations (Edwards et al., 2021; 2022;
Su et al., 2022). First, the design of such model architecture
in molecule-caption translation heavily relies on domain
experts, which can significantly limit the development and
deployment of AI-powered molecule discovery. Second,
most existing methods follow the “pre-train&fine-tuning”
paradigm for molecule-caption translation, which requires
excessive computational costs. Third, existing approaches
such as Text2Mol and MolT5 fall short in their inability to
reason on complex tasks and generalize to unseen exam-
ples. Therefore, it is desired to design a novel paradigm for
molecule-caption translation in molecule discovery.

Recently, Large Language Models (LLMs), scaling up their
weights to the billion level, have achieved tremendous suc-
cess not only in the field of Natural Language Processing
(NLP) but also in some cross-modal areas like computer
vision (Zhu et al., 2023), recommender systems (Bao et al.,
2023), and molecule discovery (Edwards et al., 2022). For
example, ChemGPT (Frey et al., 2022), a variant of GPT
model with more than one billion parameters, is introduced
to understand and generate small molecules in chemistry.
Meanwhile, in addition to the impressive capabilities in
natural language understanding and generation, LLMs also
demonstrate their powerful generalization and reasoning
capabilities (Rubin et al., 2022; Min et al., 2022), which
can generalize to other unseen tasks by specific task context
(In-Context Learning, ICL) without being fine-tuned and
largely reduce computational cost. Therefore, LLMs pro-
vide unprecedented potential to advance molecule discovery,
specifically the task of molecule-caption translation.

Phenol
C1(O)=CC=C
C=C1

Molecule
Graph:

SMILES
String:

Chemical
Formula: 

(a) Molecule Represen-
tations.

The molecule
is...[Structure]...

[Property]...

C1(O)=CC=CC=C1

AI

(b) Molecule Caption-
ing.

The molecule
is...[Structure]...

[Property]...

C1(O)=CC=CC=C1

AI

(c) Text-based Molecule
Generation.

  Please show me a description of this molecule:
"C1=CC=C(C=C1)OC2=CC=CC=C2"

  The molecule is an aromatic ether in which the
oxygen is attached to two phenyl substituents.
It has been found in muscat grapes and vanilla.
It has a role as a plant metabolite.

ChatGPT
(a) Molecule Captioning

  Help me generate a molecule based on the
given description: 
"
The molecule is a quinolinemonocarboxylate that
is the conjugate base of xanthurenic acid,
obtained by deprotonation of the carboxy group.
It has a role as an animal metabolite. It is a
conjugate base of a xanthurenic acid.
"

  C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O

(b) Text-based Molecule Generation

(d) Empowering ChatGPT with
molecule captioning and text-
based molecule generation abil-
ities.

Figure 1. An illustration on translation between molecule and natu-
ral language in molecule discovery. (a) A molecule can be denoted
as a chemical formula, SMILES string, and 2D molecule graph.
(b) Molecule captioning aims to generate a text caption to describe
a molecule for humans’ better understanding. (c) Given a text
description, text-based molecule generation is used to generate a
corresponding molecule. (d) Large language models (e.g., Chat-
GPT) can perform molecule captioning and text-based molecule
generation with corresponding well-designed prompts.

Although building specific LLMs in molecule discovery has
immense potential for advancing scientific research, we also
face significant challenges. First, due to privacy and secu-
rity concerns, many advanced large language models (e.g.,
ChatGPT and GPT4.0) are not publicly available, where
LLMs’ architectures and parameters are not released pub-
licly for fine-tuning in downstream tasks. Second, owing to
their complex architectures and the extensive data required,
training advanced LLMs requires significant computing re-
sources, leading to high costs and substantial energy con-
sumption. For instance, it has been reported that the cost
of one single training session for GPT-3 exceeds 1 mil-
lion. As a result, it is very challenging for us to re-design
our own LLMs with pre-training and fine-tuning in specific
downstream tasks. At last, it is crucial to design proper
guidelines/prompts with high-quality few-shot examples to
improve LLMs’ generalization and reasoning capabilities
for molecule discovery.

To address such challenges, as the early exploration attempt
to take advantage of the powerful capabilities of LLMs in the
molecule discovery field, in this work, we propose a novel
solution to teach LLMs with prompts for translating between
molecules and natural language, as illustrated in Figure 1 (d).
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More specifically, inspired by the latest ChatGPT, a retrieval-
based prompt paradigm through in-context learning (ICL) is
developed to conduct two sub-tasks (i.e., molecule caption-
ing and text-based molecule generation) without fine-tuning
the LLMs, where n-shot examples are retrieved to augment
the prompt instances via BM25-based caption ranking and
Morgan Fingerprints-based molecule ranking. Experiments
show that MolReGPT can achieve Text2Mol scores of 0.560
in Mol2Cap generation and 0.571 in Cap2Mol generation,
which surpasses the fine-tuned MolT5-base in both sub-
tasks of molecule-caption translation. Notably, MolReGPT
even outperforms MolT5 largely in text-based molecule gen-
eration, increasing the Text2Mol metric by 3%. Note that
all of these improvements from our proposed method are
achieved without any fine-tuning steps.

Our major contributions are summarized as follows:

• We introduce a principle strategy based on LLMs to
perform translation between molecules and natural lan-
guage for molecule discovery. To the best of our knowl-
edge, we are the first to investigate molecule-caption
translation by employing LLMs.

• We develop a novel framework (MolReGPT) to em-
power LLMs like ChatGPT to perform molecule
captioning and text-based molecule generation with-
out being fine-tuned, where a retrieval-based prompt
paradigm through in-context learning is developed to
explicitly guide the generation process.

• Comprehensive experiments on a real-world dataset
demonstrate the effectiveness of the proposed method
on molecule captioning and text-based molecule gener-
ation tasks, surpassing even fine-tuned models such as
T5-base and MolT5-base.

2. Related Work
In this section, we briefly review related work about
molecule-caption translation tasks in molecule discovery
as well as the advanced LLMs techniques.

2.1. Molecule Discovery

Molecule discovery plays a pivotal role across numerous
scientific fields, driving advancements in the development
of drug discovery and material design (Du et al., 2022).
In recent decades, AI-powered approaches have emerged
as mainstream techniques to revolutionize the process of
molecule discovery (Hu et al., 2023; Fan et al., 2023).
For instance, SMILES-based Variational Autoencoders
(VAEs) methods such as ChemVAE (Gómez-Bombarelli
et al., 2018), SD-VAE (Dai et al., 2018), and Grammar-
VAE (Kusner et al., 2017), employ a VAE-based model
that encodes and decodes SMILES strings, generating new

molecules (strings) by decoding from a Gaussian prior.
In terms of molecular string representation, existing stud-
ies have explored advanced deep representation methods
from other fields, including Convolutional Neural Network
(CNN) (Peng & Zhao, 2019; Le et al., 2019), Recurrent
Neural Network (RNN) (Grisoni et al., 2020; Amabilino
et al., 2020), and Transformer (Bagal et al., 2021; Wang
et al., 2021).

More recently, as a new task in molecule discovery,
Text2Mol (Edwards et al., 2021) is introduced to retrieve
molecules using natural language descriptions as search
queries, in which a paired dataset of molecules and their
corresponding text descriptions are constructed, enabling
the learning of a shared semantic embedding space for re-
trieval. KV-PLM (Zeng et al., 2022) develops a knowl-
edgeable machine reading system pre-trained on a domain
corpus, in which SMILES strings are inserted and link
molecule structures with biomedical text. What’s more, a
self-supervised learning framework MolT5 (Edwards et al.,
2022) is proposed to pre-train on a substantial volume of
unlabeled language text and SMILES strings, enhancing the
molecule-caption translation task, such as molecule caption-
ing and text-based molecule generation. MoMu (Su et al.,
2022) bridges molecular graphs and natural language by
pre-training molecular graphs and their semantically related
text data through comparative learning.

2.2. Large Language Models

Large Language models (LLMs) have been a trending topic
in recent years, with numerous studies exploring their ca-
pabilities and potential applications. One of the most well-
known LLMs is the GPT family (Radford et al., 2018;
2019; Brown et al., 2020; Ouyang et al., 2022), which
has played a pivotal role in advancing the field of gener-
ative language models. As a representative of the GPT fam-
ily, ChatGPT is specifically fine-tuned for conversational
purposes, which can generate impressively human-like re-
sponses (Leiter et al., 2023). In addition, other LLMs, such
as LaMDA (Thoppilan et al., 2022), PaLM (Chowdhery
et al., 2022), and Vicuna (Chiang et al., 2023), also show a
decent performance.

The power of LLMs is far beyond language generation but
also lies in their ability to learn from context, namely the
ability of in-context learning. Several works have explored
the utilization of in-context learning from various tasks,
such as KATE (Liu et al., 2021) and AutoCoT (Zhang et al.,
2022). These works show that through in-context learning,
LLMs can adapt to new tasks based on the context provided
in the input, eliminating the need for explicit fine-tuning on
specific tasks.

In addition to NLP tasks, LLMs have also shown remark-
able potential in various molecule discovery tasks, such as
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molecule understanding (Bran et al., 2023; White, 2023).
For instance, ChemBERTa (Chithrananda et al., 2020)
leverages pre-training on an extensive corpus of chemical
texts, enabling it to comprehend the structure and prop-
erties of chemical compounds. Another notable example
is MoleculeSTM (Liu et al., 2022), which employs in-
context learning in conjunction with LLMs. This approach
facilitates a deeper understanding of the relationships be-
tween chemical structures and their corresponding textual
descriptions. Furthermore, ChemGPT (Frey et al., 2022)
represents a variant of the GPT model specifically trained
on chemical data. Through the application of in-context
learning, ChemGPT is capable of generating novel chem-
ical structures and accurately predicting their properties.
MolT5 (Edwards et al., 2022) shows that LLMs can per-
form the cross-modal transition task between molecule and
text (i.e. molecule captioning task and text-based molecule
generation task), which is one of the most closely related
attempts to ours. Note that MolT5 needs to pre-train and
fine-tune LLMs for translating between molecules and natu-
ral language, leading to huge computational costs. In this pa-
per, we propose a novel framework to empower LLMs like
ChatGPT to perform molecule captioning and text-based
molecule generation without being fine-tuned.

3. MolReGPT
In this section, we aim to introduce our proposed method
(MolReGPT) as a novel solution to empower molecule dis-
covery for molecule-caption translation with LLMs like
ChatGPT. We will first introduce an overview of the pro-
posed framework, and then detail each model component.

3.1. An Overview

Due to the huge computation costs, training or fine-tuning
LLMs on the domain-specific corpus from the molecule dis-
covery field is often infeasible in practice. To address such
limitations, we investigate leveraging the great capabilities
of LLMs without changing the LLMs, where we propose a
novel framework (MolReGPT) to empower ChatGPT with
the ability of molecule-caption translation for molecule dis-
covery. More specifically, in order to improve the quality
of guidelines/prompts, a retrieval-based prompt paradigm
under in-context learning is introduced to teach ChatGPT
to conduct two molecule-related tasks: molecule captioning
(Mol2Cap) and text-based molecule generation (Cap2Mol).
The framework of MolReGPT is shown in Figure 2, con-
sisting of four main stages: Molecule-Caption Retrieval,
Prompt Management, In-Context Few-Shot Molecule Learn-
ing, and Generation Calibration, following the workflow of
pre-processing, querying, and post-processing. The first
stage, Molecule-Caption Retrieval, is used to retrieve the n
most similar examples (i.e., few-shot examples) from human-

annotated datasets (i.e., molecule-caption pairs database)
for augmenting the prompt instances. The second stage is
Prompt Management, which is executed to construct the sys-
tem prompt as evidence for successive in-context learning.
After that, both the system and the user input prompt are
sent to query LLMs such as ChatGPT to perform In-Context
Few-Shot Molecule Learning without fine-tuning LLMs for
the molecule-caption translation task in the molecule dis-
covery field. Valid responses are expected in the pre-defined
JSON format, while there may be instances where the lan-
guage models generate unexpected outputs. The last stage
is Generation Calibration, which is deployed to calibrate the
original responses for the validity of the outputs.

3.2. Molecule-Caption Retrieval

In order to teach LLMs to handle the molecule-caption
translation task (i.e., Mol2Cap and Cap2Mol) without fine-
tuning LLMs, we propose to perform in-context learning
with few-shot examples to prompt LLMs. In general, n
examples are randomly selected from human-annotated
datasets (i.e., molecule-caption pair database), providing
a general task instruction to LLMs. However, such a naive
solution often provides insufficient knowledge regarding the
associations between natural language and molecules. To
mitigate this issue, we propose incorporating retrieval meth-
ods into the selection of examples to complement the lack
of domain-specific knowledge of LLMs in molecule dis-
covery, specifically through the stage of Molecule-Caption
Retrieval. These retrieval strategies are motivated by the
similar property principle, in which molecules similar in
structures tend to exhibit similar characteristics (Wang et al.,
2016). Thus, similar captions containing the descriptions
of molecule structures and properties are used to describe
similar molecules. Therefore, by retrieving the most simi-
lar molecules or captions, we can utilize the corresponding
molecule-caption pairs as examples to prompt LLMs.

However, the SMILES representation of molecules as a
sequence structure can not reveal the actual 2-D graph topol-
ogy of molecules. Hence, domain-specific methods are
required for better molecular similarity calculation during
the retrieval stage. Specifically, given a SMILES string rep-
resentation for molecule captioning task, we introduce to
use of Morgan Fingerprints (i.e., molecular structures repre-
sentations) (Butina, 1999), to calculate molecular similarity
using Dice similarity for molecule retrieval. In text-based
molecule generation task for caption retrieval, BM25, which
is widely used in information retrieval (Robertson et al.,
2009), is proposed to compute similarity scores between
captions of molecules, which mainly contain functional
groups and properties of molecules. In both scenarios, top-n
molecule-caption pair examples are retrieved to serve as
examples in the system prompt. Next, we will detail Mor-
gan Fingerprints-based molecule retrieval and BM25-based
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You are now working as an excellent expert in chemisrty and molecule discovery. 

Given the SMILES representation of a molecule, your job is to predict the
caption of the molecule. The molecule caption is a sentence that describes the
molecule, which mainly describes the molecule's structures, properties, and
production.

Example i: 

``` 

Instruction: Given the SMILES representation of a molecule, predict the caption
of the molecule. 

Input: [Molecule Place Holder]

``` 

Your output should be: 

``` 

{"caption": "[Caption Place Holder]"} 

```
Your response should only be in the JSON format above; THERE SHOULD BE
NO OTHER CONTENT INCLUDED IN YOUR RESPONSE. 

You are now working as an excellent expert in chemistry and molecule discovery. 

Given the caption of a molecule, your job is to predict the SMILES
representation of the molecule. The molecule caption is a sentence that
describes the molecule, which mainly describes the molecule's structures,
properties, and production. You can infer the molecule SMILES representation
from the caption.
Example i: 

``` 

Instruction: Given the caption of a molecule, predict the SMILES representation
of the molecule. 

Input: [Caption Place Holder]

``` 

Your output should be: 

``` 

{"molecule": "[Molecule Place Holder]"} 

```
Your response should only be in the JSON format above; THERE SHOULD BE
NO OTHER CONTENT INCLUDED IN YOUR RESPONSE. 

Role Identification

Task Description

Examples

Output Instruction

# 2: Prompt Management

# 1: Molecule-Caption Retrieval # 3: In-Context Few-Shot Molecule Learning

# 4: Generation Calibration
System Prompt Molecule Captioning Task

 (Mol2Cap Prompt)
Text-based Molecule Generation Task

(Cap2Mol Prompt)

Input Retriever Top-n Examples

Mol Cap

Mol Cap

Mol Cap

Mol Cap

Mol Cap

BM25

Morgan
Fingerprints

Mol Cap Mol Cap

Mol Cap Mol Cap

Mol Cap Mol Cap

Mol Cap Mol Cap

Mol Cap Score

Mol Cap Score

Mol Cap Score

Mol Cap Score

Mol Cap Score

Mol Cap Score

Mol Cap Score

Mol Cap Score

Database

Ranks
Dice

Similarity

BM25
Score

Mol Cap

Mol Cap

Original Response Revised Response

System Prompt

User Input Prompt

Valid Response

Generation
Calibration

Role Identification Task Description Output InstructionExamples

Exit

Re-query

The molecule is a nitrile that is
acetonitrile where one of the

methyl hydrogens is
substituted by a phenyl group.
It has a role as a pheromone

and an animal metabolite. It is
a nitrile and a member of

benzenes. It derives from an
acetonitrile.

The molecule is a
nitrile that is

acetonitrile where one
of the methyl
hydrogens is

substituted by a 2-
thienyl group. It is a
nitrile and a member

of thiophenes. It
derives from an

acetonitrile.

C1=CC=C(C=C1)CC#N

C1=CSC(=C1)CC#N

“Input: [Place_Holder]\n" Query

ChatGPT as Example

Serve as
Context

{"caption":[Caption_Place_Holder]} {"molecule": [Molecule_Place_Holder]}

[0,0,...,1,0,...1,....]

[The, molecule,
..., 2,

methylphenyl,
..., acetonitrile]

Failed

Maximum
Error Allowance

Passed
Format
Check

Format
Correction

{"caption":The molecule is an
arylacetonitrile carrying a

methyl substituent at the 4-
position. It has been isolated
from the flower oils of Iris

pallida. It is an
arylacetonitrile and a member
of benzenes. It derives from

a propionitrile.}

The molecule is an
arylacetonitrile carrying a

methyl substituent at the 4-
position. It has been isolated
from the flower oils of Iris

pallida. It is an
arylacetonitrile and a member
of benzenes. It derives from

a propionitrile.

{"molecule":
CC(C#N)C1=CC=CC=C1C}

Cap2Mol Task

CC(C#N)C1=CC=CC=C1C

Mol2Cap Task

Molecule
CC1=CC=CC=C1CC#N

Caption

The molecule is a nitrile that is
acetonitrile where one of the

methyl hydrogens is substituted
by a 2-methylphenyl group. It
derives from an acetonitrile.

Molecule Captioning Task

Text-based Molecule Generation Task

Example 1

Example n

LLMs

Figure 2. This diagram shows the workflow of MolReGPT. MolReGPT consists of four main stages. In stage 1, Molecule-Caption
Retrieval is employed to find n best-matched examples from the local database. Then in stage 2, Prompt Management helps construct the
system prompt with the retrieved molecule-caption pairs. Following this, LLMs perform In-Context Few-Shot Molecule Learning based
on the provided system prompt and user input prompt. Finally, Generation Calibration is conducted to ensure desired output.

C1=CC=C2C(=C1)C(=O)C3=C
(C2=O)C=C(C=C3)C(=O)[O-]

C1=CC2=C(C(=C1)[O-])
NC(=CC2=O)C(=O)O

Similarity Map
Morgan Fingerprints DiceSimilarity: 0.4043 

Molecule 2Molecule 1
[0,0,...,1,...,1,...] [0,0,...,1,...,0,...]

Figure 3. Illustrations of Morgan Fingerprints and Dice Similar-
ity. The two molecules will first be transformed into the Morgan
Fingerprints. Then, Dice similarity will be calculated. The green
colour corresponds to sub-structures that contribute positively to
the similarity score between the molecules, while the purple colour
represents sub-structures that contribute negatively or have differ-
ences between the molecules.

caption retrieval.

3.2.1. MORGAN FINGERPRINTS-BASED MOLECULE
RETRIEVAL

Molecular fingerprints are numerical representations of the
chemical structures of molecules, which can be used for
various computational objectives (Butina, 1999), such as
similarity searching, property prediction, virtual screening,

and cluster analysis. One of the most representative molecu-
lar fingerprints is the Morgan Fingerprints (Morgan FTS),
which is also known as circular fingerprints or extended-
connectivity fingerprints (ECFP).

The key idea behind Morgan FTS is to capture the presence
or absence of specific sub-structures or chemical fragments
in a molecule. Morgan FTS follows a variant of the Mor-
gan algorithm (Butina, 1999), which encodes the structural
information of a molecule by representing its connectivity
patterns in a circular manner. Morgan FTS is then generated
by iteratively expanding a set of atoms from a central atom
in the molecule, capturing the neighbouring atoms and their
bond types at each expansion step. The process continues
until a pre-defined radius is reached. The resulting finger-
print is a binary bit vector, where each bit represents the
presence or absence of a particular substructure.

What’s more, Morgan FTS has several advantages over
other types of fingerprints, including their ability to han-
dle molecules of varying sizes, resistance to small structural
changes, and effectiveness in capturing structural similari-
ties between molecules. To extract the Morgan Fingerprints,
the SMILES representations of the molecules are converted
into rdkit objects using the rdkit library1. Subsequently,

1https://www.rdkit.org/
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we apply Dice similarity (Dice, 1945), also known as the
Dice coefficient, to measure the similarity between the input
molecule and the molecules in the local database. Mathe-
matically, it can be expressed as:

Dice(A,B) =
(2 ∗ |A ∩B|)
|A|+ |B|

, (1)

where A and B are the Morgan Fingerprints of the two
molecules. |A| and |B| represent the cardinality (i.e., num-
ber of sub-structures) of A and B. |A ∩ B| denotes the
number of sub-structures that are common to both A and
B. Dice similarity ranges from 0 to 1, where the value of
0 indicates no overlap or similarity between the molecules,
and the value of 1 represents complete overlap. As shown
in Figure 3, Dice similarity can be calculated by comparing
the Morgan fingerprints of the molecules. The similarity
map shows the similarities and differences between the two
molecules. The Dice similarity is particularly useful when
dealing with imbalanced datasets or focusing on the agree-
ment between positive instances (i.e., sub-structures present
in both sets) rather than the overall agreement.

Compared to existing molecule embedding meth-
ods (Coupry & Pogány, 2022), Morgan FTS together
with Dice similarity provides a distinctive advantage by
explicitly indicating the similarities in detailed molecular
structures, as these structures are usually directly stated in
the molecule captions.

3.2.2. BM25-BASED CAPTION RETRIEVAL

BM25 is one of the most representative ranking approaches
in information retrieval for calculating the relevance of the
documents to the given query (Robertson et al., 2009). The
idea is based on the term frequency-inverse document fre-
quency (TF-IDF), which measures how often a term appears
in a document (i.e., caption) and how rare it is in the cor-
pus of documents (i.e., the local database) (Aizawa, 2003).
In addition, BM25 considers the caption’s length and the
position of the query terms in the caption.

In the Cap2Mol task, we use the input caption as the query
sentence, while the captions in the local database (i.e., the
training set), are served as the corpus of documents, where
each caption represents a document. Mathematically, the
formula of BM25 can be defined as follow:

score(Q,D) =

N∑
i=1

IDF (qi)

∗ f(qi, D) ∗ (k1 + 1)

f(qi, D) + k1 ∗ (1− b+ b ∗ |D|
avgdl )

,

(2)

where D is the caption corpus and Q is the query caption.
N is the number of query terms in the query caption, qi

is the i-th query term, IDF (qi) is the inverse document
frequency of qi, f(qi, D) is the term frequency of qi in D,
k1 and b are tuning parameters, |D| is the length of D, and
avgdl is the average caption length in the corpus.

In caption retrieval, BM25 is applied to calculate the simi-
larity scores between captions so that the relevant molecule
structures described by captions can be learnt through re-
trieved molecule-caption pairs.

3.3. Prompt Management

System prompts and user input prompts are two important
parts to form the task context. User prompts are usually
more complex and contain essential instructions for task
solving and format formalization, where user prompts are
defined to formalize the user inputs. To help LLMs under-
stand the task and generate desired outputs, Prompt Man-
agement is proposed to design the system prompt templates,
which are further completed with the retrieved examples. As
shown in stage 2 of Figure 2, the system prompts consist of
four parts: Role Identification, Task Description, Retrieved
Examples, and Output Instruction.

Role Identification aims to help LLMs identify the role of
experts in the chemistry and molecule discovery domain.
By establishing this role, the LLMs are encouraged to gen-
erate responses that align with the expertise expected in the
specific domain.

Task Description provides a comprehensive explanation of
the task’s content, ensuring that LLMs have a clear under-
standing of the specific task they need to address. It also
includes critical definitions to clarify terms or concepts that
are specialized in the molecule-caption translation task.

The next component of the system prompt is designed to
define the user input prompt and incorporate the Retrieved
Examples, which serve as the evidence for the molecule-
caption translation task, allowing LLMs to leverage the
information contained within few-shot examples to generate
better responses.

Finally, Output Instruction specifies the desired format for
the response. Here, we restrict the output to a JSON format.
The choice of JSON format enables a quick and efficient
validation of the LLMs’ response, ensuring that it adheres
to the expected structure and facilitates further processing
or analysis.

3.4. In-Context Few-Shot Molecule Learning

Since ChatGPT is treated as a black-box system, it is im-
possible for us to fine-tune the model’s parameters on task-
specific datasets for translation between molecules and nat-
ural language captions. Besides, as the weights of LLMs
continue to scale, it is infeasible to train and fine-tune these
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foundation models with huge computational resources. To
address the above limitations, recently, as an alternative to
fine-tuning, in-context learning techniques provide great
opportunities to teach ChatGPT to make predictions based
on a few examples. In this work, we introduce in-context
few-shot molecule learning to perform the Mol2Cap task
and Cap2Mol task without fine-tuning ChatGPT. This stage
is to utilize both the system prompt and user input prompt
to query the LLMs after Molecule-Caption Retrieval and
Prompt Management. In particular, the combination of the
system prompt and user input prompt provides ChatGPT
with a clear guideline (i.e., Mol2Cap and Cap2Mol prompts
with a few examples) via in-context learning, The system
prompt establishes the task framework of molecule-caption
translation and molecule domain expertise, while the user
prompt narrows the focus and directs the model’s atten-
tion to the specific user input. As a result, ChatGPT can
learn how to perform the molecule-caption translation from
the given task context, without the necessity to modify its
parameters.

The formula below describes the differences between fine-
tuning and in-context learning. Let L be the model of Chat-
GPT, m be the molecule, c be the molecule caption, and
θ be the parameters of L. The fine-tuning process can be
formulated as:

c = L(m; θ∗m), (3)

m = L(c; θ∗c ), (4)

where θ∗m and θ∗c are the updated parameters after being
fine-tuned on the entire training set (θ∗m for Mol2Cap and
θ∗c for Cap2Mol).

In contrast, the In-Context Few-Shot Molecule Learning
process can be defined as:

c = L(pm(m); θ), (5)

m = L(pc(c); θ), (6)

where pm(·) and pc(·) are the Prompt Management tem-
plates that transform the original user input (molecules pm
or captions pc) into system prompts with the user input
prompts for querying ChatGPT, and θ is the original param-
eters without being fine-tuned.

It is apparent that the fine-tuning methods require additional
model training for the sub-tasks of molecule-caption transla-
tion. In contrast, in-context few-shot molecule learning only
needs to switch the prompt templates, which is much more
efficient for deployment. Through the way of in-context few-
shot molecule learning, valid and meaningful responses are
expected, which contain the generated captions or molecules
in our pre-defined JSON formats.

3.5. Generation Calibration

Despite specifying the desired output format, LLMs (e.g.,
ChatGPT) can occasionally produce unexpected responses,
including incorrect output formats and denial of answering.
To address these issues, a generation calibration mechanism
is introduced to validate the response from ChatGPT.

In Generation Calibration, we first check the format of orig-
inal responses by parsing them into JSON objects. If the
parsing process fails, indicating a deviation from the ex-
pected format, several pre-defined format correction strate-
gies, such as Regular Matching (Thompson, 1968), are
introduced to correct the format and extract the desired out-
put from the response. If the original response successfully
passes the format check or can be calibrated using the format
correction strategies, it is considered valid and accepted as
a final response. However, if the original response fails the
format check and cannot be corrected within the predefined
strategies, we initiate re-queries. Notably, there is a special
case for re-queries. When the original response reports the
”Exceed Maximum Input Length Limitation” error, we will
remove the longest example in the re-query phase until the
query length meets the length limitation. The re-query pro-
cess involves making additional queries to the LLMs until
a valid response is obtained or until the maximum error
allowance is reached. This maximum error allowance is set
to ensure that the system does not get stuck in an endless
loop and instead provides a suitable response to the user
within acceptable bounds.

By employing the generation calibration stage, we can miti-
gate unexpected deviations from the desired output format
and ensure that the final responses align with the expected
format and requirements.

4. Experiment
In this section, we aim to evaluate the feasibility and effec-
tiveness of the proposed method MolReGPT by conducting
comprehensive experiments on the molecule-caption trans-
lation task. Additionally, ablation studies are conducted to
investigate the impact of different retrieval methods and the
number of selected examples. These investigations aim to
provide deeper insights into the performance and capabili-
ties of MolReGPT.

4.1. Experimental Settings

We first introduce the basic experimental settings. In this
work, we use ChatGPT through the OpenAI API 2 with
backend model GPT-3.5-turbo, which can not be fine-tuned
in our tasks. Besides, we will provide an overview of the
data and metrics employed in this section.

2https://openai.com/blog/openai-api
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4.1.1. DATASET

The research on molecule-caption translation is still in the
early stage, and there is only one public dataset ChEBI-20
(Edwards et al., 2021), which contains 33,010 molecule-
caption pairs. To ensure consistency, we adhere to the data
split process as used in MolT5 (Edwards et al., 2022), di-
viding the dataset into 80/10/10% train/validation/test splits.
For our method evaluation, we focus on the test split while
utilizing the training set as the local database to retrieve
n-shot examples through in-context learning.

4.1.2. EVALUATION METRICS

In terms of evaluation metrics, we align with the metrics
adopted in MolT5 for comparison (Edwards et al., 2022).
By adopting these metrics, we ensure consistency and enable
a meaningful and fair assessment of the performance of our
method.

• Mol2Cap Metrics. In the Mol2Cap task, natural lan-
guage generation metrics like BLEU, ROUGE, and
METEOR scores are applied to assess the proximity of
the generated output to the ground truth. Here, BLEU
and ROUGE scores evaluate the n-gram precision, mea-
suring the alignment between the generated structures
and the reference structures, while METEOR is a recall-
oriented metric that accounts for both exact matches
and paraphrases between the generated and reference
structures. Additionally, we incorporate Text2Mol, a
task-specific metric that employs pre-trained models to
quantify the structural similarity between the generated
and reference molecules using their SMILES represen-
tations (Edwards et al., 2021). This metric provides
further insights into the quality and relevance of the
generated output in terms of the underlying molecular
structures.

• Cap2Mol Metrics. Since the SMILES representation
of molecules exhibits a sequence structure, natural lan-
guage metrics can be directly applied for evaluation.
Thus, BLEU and the Exact Match scores are calcu-
lated as initial assessments. Furthermore, molecule-
specified metrics are also reported, including Leven-
shtein distance, validity, and three molecule finger-
prints scores - MACCS FTS, RDK FTS, and Morgan
FTS. These metrics provide valuable insights into the
quality, validity, and structural characteristics of the
generated molecules. Finally, the Text2Mol metric is
also discussed here to highlight the relevance between
the generated molecules and the input molecule cap-
tions.

Note that smaller values of Levenshtein score and FCD indi-
cate better generation performance in the molecule genera-

tion task, while other evaluation metrics positively correlate
to the performance.

4.1.3. BASELINES

It is worth mentioning that there are limited baselines for
translating between molecule captioning and text-based
molecule generation. Specifically, the following baselines
are selected for performance evaluation:

• Transformer (Vaswani et al., 2017). This method is
the most representative language architecture to pro-
cess natural language. A vanilla Transformer model
with six encoder and decoder layers, directly trained
on ChEBI-20. Note that this model is not pre-trained,
making it simple and easy to implement.

• T5-base (Raffel et al., 2020). T5 is pre-trained on the
Colossal Clean Crawled Corpus (C4), but no domain
knowledge is specifically fed for pre-training. In this
work, the base version of T5 is directly fine-tuned on
ChEBI-20 for molecule discovery.

• MolT5-base (Edwards et al., 2022). This model is
pre-trained on a large corpus with both language texts
and SMILES strings so that it can have a prior under-
standing of the two domains. More specifically, the
base version of MolT5 was pre-trained on the Colossal
Clean Crawled Corpus (C4) and ZINC-15 datasets and
further fine-tuned on task-specific dataset ChEBI-20.

Note that these baselines are required to fine-tune the model
on the public dataset ChEBI-20, specifically tailored to the
molecule-caption translation task.

4.2. Performance Comparison of Molecule-Caption
Translation

We present the results of each sub-task within the molecule-
caption translation task, incorporating both quantitative anal-
ysis and detailed examples for comparison. In addition, Fig-
ures 7, 5 and 4 illustrate specific examples that demonstrate
the differences among various models, providing a visual
understanding of their performance.

4.2.1. MOLECULE CAPTIONING (MOL2CAP)

Given a molecule’s SMILES representation, Mol2Cap aims
to generate natural language for describing the molecule to
enable humans to understand molecular structure, proper-
ties, and functionalities in a more efficient and cost-effective
manner. Table 1 illustrates the performance comparison of
10-shot MolReGPT (GPT-3.5-turbo) with other advanced
methods for the Mol2Cap task, offering an overview of
the results. Notably, our method can achieve comparable

8



Submission and Formatting Instructions for ICML 2023

ROUGE scores to MolT5-base and T5-base while surpass-
ing all selected baselines in the remaining metrics without
being fine-tuned on ChEBI-20 dataset. Furthermore, we
obtain the following observations.

First, GPT-3.5-turbo is not explicitly trained or fine-tuned
for molecule-caption translation tasks so it has poor zero-
shot performance. However, with the instruction of 10-shot
MolReGPT, GPT-3.5-turbo achieves significantly improved
results that gain an improvement of 60% to the zero-shot
case and 2.4% to MolT5-base under the Text2Mol metric,
indicating that our proposed method can teach ChatGPT to
effectively learn the Mol2Cap task from the system prompt.

Second, limited by the number of examples, MolReGPT
only gains limited insights from the distribution of molecule
captions. The model’s predictions for captions heavily rely
on its internal factual knowledge and the contextual infor-
mation provided by the system prompt, which means that
common patterns may not be as apparent and can not be
captured from the selected n examples. As a result, although
our 10-shot MolReGPT achieves a 0.560 Text2Mol score,
which is higher than MolT5’s 0.547, MolReGPT in turn
gets lower ROUGE scores compared to MolT5. However,
it is crucial to note that the captions generated by 10-shot
MolReGPT with lower ROUGE scores are not entirely in-
correct. In fact, the highest Text2Mol score serves as a
reliable indicator of the generation quality and highlights
the better relevance between the generated molecules and
the molecule captions.

Figure 4 lists examples of molecule captioning results to
compare the performance among different models. From
the given examples, we note that our MolReGPT can gen-
erate captions that contain key information about the input
molecule. And more importantly, the generated captions are
better in grammar and easy for humans to understand.

4.2.2. TEXT-BASED MOLECULE GENERATION
(CAP2MOL)

Given a natural language description (e.g., properties and
functional groups), the goal of Cap2Mol is to generate the
corresponding molecule (i.e., SMILES string) for molecule
discovery. Results of the text-based molecule generation
task are presented in Table 2. Comparing all these baselines,
10-shot MolReGPT significantly enhances the capabilities
of GPT-3.5-turbo, leading to the best overall performance.
In molecular evaluation metrics like MACCS FTS, RDK
FTS, and Morgan FTS, MolReGPT helps GPT-3.5-turbo
gain a significant 15% increase in Text2Mol score com-
pared to MolT5-base. Considering the molecule finger-
prints scores, our 10-shot MolReGPT also gets an average
of 18% improvement compared to MolT5-base. Besides,
MolReGPT also achieves the highest exact match score,
generating 13.9% molecules that are completely correct to

the ground truth. Remarkably, these impressive results are
achieved without additional training or fine-tuning steps.

Furthermore, it is worth noting that the original weights
of T5 are primarily for natural language generation, which
means it has to be fine-tuned separately to fit the two sub-
tasks in this study. Unfortunately, MolT5 does not tackle
this issue, as it continues to treat the two sub-tasks of the
molecule-caption translation task as separate tasks. Switch-
ing between the two sub-tasks in MolT5 requires using a dif-
ferent model class and reloading the weights, which makes
it technically inefficient. Besides, treating these sub-tasks
as independent overlooks the potential knowledge transfer
between them. In contrast, MolReGPT enables a single
foundation LLMs to solve both the two sub-tasks simulta-
neously, providing a comprehensive solution for LLMs to
address molecule-related tasks.

Figure 5 lists examples of text-based molecule generation
results to compare the performance among different models.
From the given examples, it is clear that our MolReGPT can
generate structures more similar to the ground truth.

4.3. Ablation Study

In addition to the experiments above, we also perform ab-
lation studies to analyze the critical factors that influence
the performance of MolReGPT. We first examine the im-
pact of different retrieval strategies employed for retrieving
n-shot examples. Subsequently, we investigate the influence
of the number of selected examples, denoted as n, includ-
ing zero-shot results to ensure that GPT-3.5-turbo is not
already trained to handle the molecule-caption translation
task. These ablation studies shed light on the key aspects
contributing to the performance of MolReGPT.

4.3.1. IMPACT OF RETRIEVAL STRATEGIES

Retrieval strategies play a key role in guiding LLMs to
perform molecule-caption translation tasks for MolReGPT.
More similar examples are retrieved, and more valuable
information could be contained for in-context few-shot
molecule learning. For each sub-task in the molecule-
caption translation task, we choose three retrieval strategies
for comparison. The detailed results are shown in Table 3
and Table 4.

Molecule Captioning (Mol2Cap). In the Mol2Cap task,
we compare the performance of three retrieval strategies:
Random, BM25, and Morgan FTS (adopted in MolReGPT),.
The Random strategy involves retrieving n random exam-
ples, while BM25 applies a character-level BM25 algorithm
to the molecule SMILES representations.

As shown in Table 3, among the three retrieval strategies,
Morgan FTS shows the best performance with the same
value of n, outperforming BM25 by 37% in the Text2Mol
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Table 1. The performance of molecule captioning on ChEBI-20 dataset. Experimental results for Transformer, T5-base, and MolT5-base
are retrieved from (Edwards et al., 2022). The best scores are in bold, and the second-best scores are underlined.

Methods BLEU-2↑ BLEU-4↑ ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METETOR↑ Text2Mol↑
Transformer (Edwards et al., 2022) 0.061 0.027 0.204 0.087 0.186 0.114 0.057

T5-base (Edwards et al., 2022) 0.511 0.423 0.607 0.451 0.550 0.539 0.523
MolT5-base (Edwards et al., 2022) 0.540 0.457 0.634 0.485 0.578 0.569 0.547

GPT-3.5-turbo (zero-shot) 0.103 0.050 0.261 0.088 0.204 0.161 0.352
GPT-3.5-turbo (10-shot MolReGPT) 0.565 0.482 0.623 0.450 0.543 0.585 0.560

Table 2. Text-based molecule generation results on CheBI-20. Experimental results for Transformer, T5-base, and MolT5-base are
retrieved from (Edwards et al., 2022). The best scores are in bold, and the second-best scores are underlined.

Method BLEU↑ EM↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
Transformer (Edwards et al., 2022) 0.499 0.000 57.66 0.480 0.320 0.217 11.32 0.277 0.906

T5-base (Edwards et al., 2022) 0.762 0.069 24.950 0.731 0.605 0.545 2.48 0.499 0.660
MolT5-base (Edwards et al., 2022) 0.769 0.081 24.458 0.721 0.588 0.529 2.18 0.496 0.772

GPT-3.5-turbo (zero-shot) 0.489 0.019 52.13 0.705 0.462 0.367 2.05 0.479 0.802
GPT-3.5-turbo (10-shot MolReGPT) 0.790 0.139 24.91 0.847 0.708 0.624 0.57 0.571 0.887

metric. Besides, the ROUGE-L score achieved by Morgan
FTS is almost doubled compared to the Random or BM25
retrieval strategies. The use of Morgan FTS with Dice simi-
larity shows a better estimation of the structural similarity
between molecules by comparing unique structural features
like functional groups. These features are usually revealed
in molecule captions with detailed descriptions. In this
case, retrieving similar molecules by Morgan FTS could
effectively guide the LLM to learn the associations between
molecule structures and caption descriptions, resulting in
more accurate and desired outputs.

Text-based Molecule Generation (Cap2Mol). In the
Cap2Mol task, we also employ three retrieval strategies:
Random, SentenceBert, and BM25 (adopted in MolReGPT).
The Random strategy still retrieves n random examples,
while SentenceBert encodes captions as numerical vectors
to compute their semantic similarity.

As shown in Table 4, we find that BM25 is better in the
Cap2Mol task, despite the fact that SentenceBert has outper-
formed BM25 in many classical NLP text retrieval datasets.
When n changes from 1 to 10, n-shot BM25 always achieves
better BLEU, Exact Match, Levenshtein, and fingerprints
scores than n-shot SentenceBert. As shown in the input
caption (stage#1) of Figure 2, the input molecule captions
tend to use phrases with dashes (-) like ”2-methylphenyl”
to connect the structure details of the molecule. Under-
standing such phrases plays a crucial role in generating
correct molecule structures. In this case, retrieving similar
texts while precisely matching these details significantly
contributes to performance improvement. In contrast, Sen-
tenceBert, as a neural method, encodes an entire caption into
a 1-D embedding vector, focusing more on semantic simi-
larity rather than specific details. Consequently, BM25 is
chosen as the retrieval strategy of MolReGPT in text-based

molecule generation.

All in all, in both sub-tasks, compared to random selection,
the other retrieval strategies used in this paper can help im-
prove n-shot generation results. These strategies enhance
the overall performance metrics, underscoring the impor-
tance of thoughtful retrieval strategy design for achieving
performance improvement in MolReGPT.

4.3.2. IMPACT OF THE NUMBER OF EXAMPLES FOR
IN-CONTEXT LEARNING

In this subsection, we study how the number of examples
contained in the system prompt through in-context learning
affects the performance.

Zero-shot Performance. In the zero-shot scenario, where
no extra examples are included in the prompt for guid-
ing LLMs for learning molecule-caption translation tasks,
we utilize two special spans, ‘[MOLECULE MASK]’ and
‘[CAPTION MASK]’, to inform the LLMs of the desired
output format, as shown in Figure 6 (in Appendix). In this
case, the output of the LLMs can be conveniently filtered
and further processed to satisfy the desired output specifica-
tions for molecule discovery.

After analyzing the zero-shot results of GPT-3.5-turbo in
Tables 3 and 4, we can observe that OpenAI did include
SMILES strings in their training corpus because it can gen-
erate basically valid SMILES representations of molecules
based on zero-shot prompts, achieving a 0.802 validity score
and a 0.479 Text2Mol score in molecule generation. How-
ever, it is important to note that the zero-shot results exhibit
a performance level similar to a vanilla Transformer model.
This observation provides evidence that GPT-3.5-turbo is
not specifically trained on the molecule-caption translation
task, thereby alleviating concerns regarding potential infor-
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Transformer MolT5 Ours Ground Truth

the molecule is the
stable isotope of
molybdenum with
relative atomic

mass 94. 905842,
15. 9 atom percent
natural abundance
and nuclear spin 5

/ 2.

The molecule is a
tetrasaccharide derivative

consisting of a beta-D-
galactopyranosyl residue

attached to the mannose via an
alpha-(2->3)-linkage. It is a

member of pyranoses, a
tetrasaccharide derivative and

an amino cyclitol. It derives
from a beta-D-Gal-(1->3)-beta-

D-Glcp-(1->3)-beta-D-Galp.

The molecule is a myricetin
O-glucuronide that is

myricetin with a beta-D-
glucosiduronic acid residue
attached at the 3-position.

It has a role as a
metabolite. It is a myricetin

O-glucuronide, a
pentahydroxyflavone and a
monosaccharide derivative.

The molecule is a
myricetin O-glucuronide
that is myricetin with a
beta-D-glucosiduronic

acid residue attached at
the 5-position. It has a

role as a metabolite. It is
a myricetin O-glucuronide,
a pentahydroxyflavone, a
member of flavonols and a

monosaccharide
derivative.

Input

the molecule is the
stable isotope of

hydrogen with
relative atomic mass
1. 007825, 3. 4 atom

percent natural
abundance and

nuclear spin 1 / 2.

The molecule is an
alkanesulfonic acid comprising

equimolar amounts of (-)-
c1cccsc1=S. It has a role as a

food emulsifier and a
mammalian metabolite. It is
an alkanesulfonic acid and a
member of octa-2,4-dien-1-

ols. It derives from a hydride
of an equimolar amount of a

(-)-c1ccn.

The molecule is a
citrate salt in which

two of the three
carboxy groups are
deprotonated and
associated with

ammonium ions as
counter-cations. It has
a role as a buffer. It is
an ammonium salt and a

citrate salt.

The molecule is a citrate
salt in which all three
carboxy groups are
deprotonated and
associated with

ammonium ions as
counter-cations. It has a
role as a food emulsifier

and a buffer. It is an
ammonium salt and a

citrate salt.

the molecule is the
stable isotope of
molybdenum with

relative atomic mass
94. 905842, 15. 9

atom percent natural
abundance and

nuclear spin 5 / 2.

The molecule is a member
of the class of chromanes
that is chromane which is
substituted by a hydroxy
group at position 3 and a

methyl group at position 2
It is a member of
chromanes and a

hexacyclic triterpenoid. It
derives from a chromane.
It is a conjugate acid of a

dehydrocytidine(1-).

The molecule is a member of the
class of hydroxycyclohexanones

that is bornane-2,6-dione bearing
an additional methyl substituent
at position 3 and a gem-dimethyl
group at position 2 (the 4R,6R-

diastereomer). It has a role as a
bacterial metabolite. It is a

cyclic 1,3-diketone, a
hydroxycyclohexanone and a
bornane monoterpenoid. It
derives from a hydride of a

bornane.

The molecule is a
member of the class of
cyclohexanones that is

cyclohexane-1,4-
dionecarrying a gem-

dimethyl group at
position 2 and an
additional methyl

substituent at position 6
(the R-enantiomer). It

has a role as a bacterial
metabolite. It derives

from a cyclohexane-1,4-
dione.

1

2

3

Figure 4. Examples of molecule captions generated by different models, where SMILES strings are converted to molecule graphs for
better visualization. Based on the same input molecule graph, our MolReGPT can generate accurate and natural captions to describe the
structure, properties, and even the functions of the molecule. In contrast, Transformer generates meaningless captions that are far from the
ground truth. Captions generated by MolT5-base seem better but still have many typo errors.

mation leakage.

Few-shot Performance. Table 3 and Table 4 list the com-
prehensive details of the experimental results, while Figure
8 (a) and Figure 8 (b) illustrate how the Text2Mol score
changes when the number of examples increases.

Normally, the performance should improve as the number
of examples, denoted as n, increases, as more examples
provide additional knowledge for the task at hand. However,
due to the input length limitation of LLMs, it is impossible
to contain a large number of examples in the system prompt.
Therefore, for few-shot scenarios, we choose four different
values 1, 2, 5, and 10.

Tables 3 and 4 illustrate that performance generally im-
proves as n increases in the system prompt through in-
context learning. Significant performance enhancements
are observed as n changes from 0 to 10. Taking Morgan
FTS and BM25 as examples, in caption generation, we see

remarkable increases from 0.050 to 0.482, 0.204 to 0.543,
and 0.352 to 0.560 in BLEU-4, ROUGE-L, and Text2Mol
scores, respectively. Besides, BM25 improves molecule gen-
eration from 0.489 to 0.790 in the BLEU score and 0.479 to
0.571 in the Text2Mol score.

Besides, it is also interesting to notice that when n increases
from 5 to 10, the Text2Mol metrics almost keep the same.
This could be the problem of the maximum input length
limitation of LLMs. To fit the input length limitation, we
would remove the longest examples to degrade the n-shot
generation to (n-1)-shot generation. As n increases, there is
a higher possibility of exceeding the input length limitation.
In this case, unless the maximum input length of the LLM
is expanded, the performance will finally converge when n
continues to grow.
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The molecule is a catechol that is 5-
methylbenzene-1,2-diol bearing a 3-

hydroxy-5-methylphenoxy substituent at
position 3. It has a role as a metabolite,
an antimalarial, an anti-HSV-1 agent, an

antimycobacterial drug and an
antineoplastic agent. It is a member of

catechols and an aromatic ether. It
derives from a diphenyl ether.

The molecule is the conjugate base of 3-
dehydro-L-threonic acid; major species at

pH 7.3. It is a hydroxy monocarboxylic
acid anion and a 3-oxo monocarboxylic
acid anion. It is a conjugate base of a

(R)-2,4-dihydroxy-3-oxobutanoic acid. It
is an enantiomer of a (S)-2,4-dihydroxy-

3-oxobutanoate.

The molecule is a nucleotide-sugar
oxoanion arising from deprotonation of
the diphosphate OH groups of dTDP-4-

dehydro-2,3,6-trideoxy-alpha-D-glucose;
major species at pH 7.3. It has a role as a

bacterial metabolite. It is a conjugate
base of a dTDP-4-dehydro-2,3,6-

trideoxy-alpha-D-glucose.

Input Transformer MolT5 Ours Ground Truth

1

2

3

Figure 5. Examples of molecules generated by different models, where SMILES strings are converted to molecule graphs for better
visualization. Based on the same input caption, our MolReGPT can generate accurate molecule graphs described by the caption. In
contrast, Transformer generates quite different molecules compared to the ground truth. Compared to Transformer, molecules generated
by MolT5-base are closer to the ground truth but still miss so many details.

5. Conclusion
In this work, we propose MolReGPT, a general retrieval-
based prompt paradigm that empowers molecule discov-
ery with LLMs like ChatGPT under In-Context Few-Shot
Molecule Learning. MolReGPT leverages the molecu-
lar similarity principle to retrieve examples from a local
database, guiding LLMs in generating n-shot outputs with-
out fine-tuning. Our method is focused and evaluated on
the task of molecule-caption translation, including molecule
captioning (Mol2Cap) and text-based molecule generation
(Cap2Mol). Specifically, BM25 is applied to retrieve simi-
lar molecule captions, while Morgan Fingerprints and Dice
similarity are adopted to retrieve similar molecules. Ex-
perimental results show that our proposed MolReGPT can
empower ChatGPT to achieve 0.560 and 0.571 Text2Mol
scores in molecule captioning and molecule generation, re-
spectively. The performance surpasses fine-tuned models
like MolT5-base in both molecule understanding and text-
based molecule generation aspects and is even comparable
to the fine-tuned MolT5-large. To conclude, MolReGPT
provides a novel and versatile paradigm to deploy LLMs
in molecule discovery through in-context learning, which
greatly reduces the cost of domain transfer and explores the
potential of LLMs in molecule discovery.
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A. Appendix

You are now working as an excellent expert in chemisrty and drug
discovery. 

Given the SMILES representation of a molecule, your job is to predict the
caption of the molecule. The molecule caption is a sentence that describes
the molecule, which mainly describes the molecule's structures, properties,
and production.

Task Format: 

``` 

Instruction: Given the SMILES representation of a molecule, predict the
caption of the molecule. 

Input: [MOLECULE_MASK]

``` 

Your output should be: 

``` 

{"caption": "[CAPTION_MASK]"} 

```

Your response should only be in the JSON format above; THERE SHOULD
BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE. 

You are now working as an excellent expert in chemisrty and drug
discovery. 

Given the caption of a molecule, your job is to predict the SMILES
representation of the molecule. The molecule caption is a sentence that
describes the molecule, which mainly describes the molecule's structures,
properties, and production. You can infer the molecule SMILES
representation from the caption.

Task Format: 

``` 

Instruction: Given the caption of a molecule, predict the SMILES
representation of the molecule. 

Input: [CAPTION_MASK]

``` 

Your output should be: 

``` 

{"molecule": "[MOLECULE_MASK]"} 

```

Your response should only be in the JSON format above; THERE SHOULD
BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE. 

Figure 6. System Prompt for zero-shot Molecule-Caption translation. The main structure of zero-shot prompts is almost the same as that
of few-shot prompts. The main difference lies in that the Example part in few-shot prompts is changed to Task Format to pre-define the
input and output format. To avoid information leaks, we use ”[CAPTION MASK]” and ”[MOLECULE MASK]” to denote the position
of captions and molecules.

1

2

Input MolT5 Ours

The molecule contains
five benzene rings and
a couple of hydrophobic
groups. The molecule

can make hard
materials. The main

function of the molecule
is to strengthen the

wings of the areo planes

The molecule contains
two benzene rings and a
few hydrophilic groups.

The main function of
the molecule is to cure

cold.

Benzene

Hydrophobic
 Group

Hydeophilic
 Group

Figure 7. Illustrations of molecule graphs generated by MolT5 and our MolReGPT, given customized inputs. Notably, the key points in
Example 1 highlight the five benzene rings and hydrophobic groups in the structure, which are correctly generated by our MolReGPT.
In contrast, the results of MolT5 generate the incorrect number of benzene rings and contain a few hydrophilic groups. In example 2,
both generations give the correct number of benzene rings, while MolReGPT generates more hydrophilic groups, which are closer to our
input caption.
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(a) Text2Mol metric comparison of caption retrieval strategies
with respect to the change of the number of selected examples in
the Cap2Mol task.
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(b) Text2Mol metric comparison of molecule retrieval strategies
with respect to the change of the number of selected examples in
the Mol2Cap task.

Figure 8. The trend of the Text2Mol metric with respect to the number of examples (i.e., n). Basically, as n increases, the n-shot
performance is also improved. However, when n increases from 1 to 2, we see a clear performance drop in molecule generation, which is
possibly the reason that the noise brought by the added examples exceeds the information gain they could bring. Besides, in caption
generation, we see a remarkable increase by comparing Morgan Fingerprints to other retrieval strategies, showing the superiority of
Morgan Fingerprints-based molecule retrieval. It is also interesting to notice that when n increases from 5 to 10, the Text2Mol metrics
almost keep the same. This is the problem of the maximum input length limitation of LLMs. To fit the input length limitation, we would
remove the longest examples to degrade the n-shot generation to (n-1)-shot generation. As n increases, there is a higher possibility of
exceeding the input length limitation. In this case, unless the maximum input length of the LLMs is expanded, the performance will
finally converge when n continues to grow.
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